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ABSTRACT

This technical report outlines our solution to DCASE 2023 Chal-
lenge Task 2, First-Shot Unsupervised Anomalous Sound Detec-
tion for Machine Condition Monitoring. This year’s task focuses on
the first-shot problem: the development dataset and the evaluation
dataset have completely different sets of machine types, and each
machine type contains only one section. We propose an anomaly
detection method based on attribute classification and conditional
autoencoder. The attribute classification method includes model
pre-training, embedding extraction and inlier modeling, and the
conditional autoencoder uses attribute information as conditions.
The proposed system achieves 78.35% in the harmonic mean of all
machine types, sections, and domains for the area under the curve
(AUC) and partial AUC (p = 0.1) on the development set.

Index Terms— DCASE, unsupervised anomalous sound de-
tection, first-shot, attribute classification, autoencoder

1. INTRODUCTION

In DCASE challenge 2023 Task 2 “First-Shot Unsupervised
Anomalous Sound Detection for Machine Condition Monitor-
ing” [1, 2], it is required to detect anomalous sounds of machines.
In real-world conditions, it is often easier for us to obtain the sound
of the machine working normally, while the anomalies are rare and
highly diverse. Therefore, we need to use the normal sounds in the
training data to detect anomalous sounds in the test data. Further-
more, the operational states of a machine or the environmental noise
can change to cause domain shifts. The system needs to use do-
main generalization techniques to handle frequent or hard-to-notice
domain shifts. In the DCASE 2023 task, first-shot problem is in-
troduced, that is, we need to train a model for a completely new
machine type, and can only use a limited number of machines from
its machine type.

Our submission includes two major approaches for anomalous
sound detection. The first method is based on machine attribute
classification. The second approach is to detect anomalies with
the conditional autoencoder using machine attribute information as

conditions, and the Mahalanobis distance is used to calculate the
anomaly score.

In the following, we describe each approach and our experimen-
tal results in detail. Each recording used in this challenge is a single-
channel and 10-second long audio. The development set includes
seven machines: ToyCar, ToyTrain, Fan, Gearbox, Bearing, Slide
rail and Valve, and the evaluation set includes seven new machines:
Vacuum, ToyTank, ToyNscale, ToyDrone, Bandsaw, Grinder, and
Shaker [3, 4].

2. PROPOSED APPROACH

2.1. Attribute Classification

According to the results of previous challenges [5, 6, 7], methods
based on self-supervised classification usually achieve better per-
formance [8, 9, 10]. For this year’s task, although there is only one
section for each machine, we can train a classifier with machine
attribute information. Specifically, in order to get a more robust
anomaly detector, first, we use the training data of all machines in
the development set to train a 14-category domain classifier, and
then we fine-tune the model parameters to get the attribute classifier
for each machine. Each attribute of the machine has a classifica-
tion head, and there is also a classification head for distinguishing
positive machines from negative machines (the other six types of
machines). Then, based on the attribute classifier, we extract em-
beddings of training data to train inlier models (IM) to model the
probability distribution of normal data. In the inference stage, after
each test data embedding is extracted, data that deviates from the
probability distribution of normal data is detected as abnormal.

2.1.1. Acoustic Features

We transformed all audio clip into spectrograms with a Mel trans-
formation. At the same time, Liu et al. [11] proposed the STgram
structure, which can use time-domain information to complement
the spectrogram. Therefore, we extract temporal features from
the raw wave and then concatenate it with the mel spectrogram.
In addition, in order to improve the generalization of the model
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Table 1: Results of the attribute classification method on the devel-
opment set (%). “AUC-S” and “AUC-T” represent the AUC of the
source and target domains, respectively.
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Table 2: Results of the conditional AE on the development set (%).
“AUC-S” and “AUC-T” represent the AUC of the source and target
domains, respectively.

ToyCar ToyTrain bearing fan gearbox slider

ToyCar ToyTrain bearing fan gearbox slider valve

AUC-S 67.71 73.40 84.62 8294 76.56 99.46
Model 1 AUC-T 66.54 63.20 75.08 83.94 76.00 90.66
pAUC 53.89 5426 64.59 73.26 68.89 82.05

AUC-S 68.04 6244 71.02 69.46 7532 89.70 57.95
AUC-T 55.38 56.72  72.04 62.60 76.06 76.02 54.08
pAUC 49.84 4992 53.68 59.74 57.53 60.00 52.47

AUC-S 66.56 6886 8836 9574 7839 99.66
Model 2 AUC-T 67.61 61.38  77.86 83.44 74.83 93.86
pAUC 58.11 5095 7442 80.37 62.37 88.89
AUC-S 68.48 7578 78.64 8496 79.08 99.52
Model 3 AUC-T 62.70  65.86 74.94 69.48 79.28 92.56
pAUC 5921 5479 67.00 58.89 59.42 82.74

and the representation of the feature, we use the pre-trained model
wav2vec [12] to extract feature vectors to connect with the above
features.

2.1.2. Training and Results

We choose EfficientNet-BO [13] as the network structure for domain
classification and attribute classification, and mixup [14] is used for
data augmentation. Further, a domain generalization strategy is ap-
plied, that is, when creating a mini-batch, we sample normal data
in the target domain to ensure that there are two target domain sam-
ples in the mini-batch. AdamW [15] optimizer is used with the
OneCycleLR scheduler for 300 epochs, and the initial learning rate
is 0.001. The batch size is set to 128, and BCEWithLogitsLoss is
adopted. LOF, KNN, and GMM are used as IM to model the proba-
bility distribution of normal data and then calculate anomaly scores.
On this basis, we employ manifold mixup [16] to improve the gen-
eralization of the model, and then add batch hard triplet loss [17]
to improve the anomaly detection performance, and try to use 3-
channel features (Mel spectrogram, Tgram features and wav2vec
pre-trained features) to replace the mel spectrogram. The three
models we used are summarized as follows:

e Model 1: Mel spectrogram, BCEWithLogitsLoss

e Model 2: Mel spectrogram, Manifold mixup, BCEWithLogit-
sLoss+Batch hard tripet loss

e Model 3: Mel spectrogram+Tgram features+Wav2vec pre-
trained features, Manifold mixup, BCEWithLogitsLoss

The results of the three models on the development set are
shown in Table 1. Among them, for the valve, on the basis of Model
1, the performance is better when the 14-category domain classifi-
cation model is not loaded and the machine classification head is
not used, and the attribute classification is directly used. Its AUC
(source), AUC (target) and pAUC are 91.50%, 93.82%, 85.37%, re-
spectively. We keep this fixed experimental configuration for the
valve, so the results for the valve are no longer shown in Table 1.

2.2. Conditional Autoencoder

The autoencoder (AE) is based on the reconstruction error to re-
alize the detection of anomalous sound. That is, the input feature
vector is first mapped to a hidden representation with a lower di-
mensional space by the encoder component, and then, the decoder
component attempts to reconstruct the inverse transformation from

Table 3: DCASE 2023 Task 2 experimental results on development
dataset (%). The value in the row “Total Score” represents the har-
monic mean of the AUC and pAUC scores over all the machine
types, sections, and domains.

Baseline Baseline Our svstem
(AE-MSE) (AE-MAHALA) y

AUC (source) 70.10 74.53 72.58
ToyCar AUC (target) 46.89 43.42 68.04
pAUC 52.47 49.18 58.95
AUC (source) 57.93 55.98 73.80
ToyTrain AUC (target) 57.02 42.45 66.62
pAUC 48.57 48.13 53.32
AUC (source)  65.92 65.16 88.94
bearing AUC (target) 55.75 55.28 80.62
pAUC 50.42 51.37 77.11
AUC (source) 80.19 87.10 91.90
fan  AUC (target) 36.18 45.98 86.18
pAUC 59.04 59.33 76.11
AUC (source) 60.31 71.88 86.18
gearbox AUC (target) 60.69 70.78 83.78
pAUC 53.22 54.34 67.89
AUC (source) 70.31 84.02 99.94
slider AUC (target) 48.77 73.29 95.68
pAUC 56.37 54.72 90.89
AUC (source)  55.35 56.31 91.50
valve AUC (target) 50.69 51.40 93.82
pAUC 51.18 51.08 85.37
Total Score 55.02 56.91 78.35

the hidden representation to the original input signal. The differ-
ence between the feature vector of the original input and the output
vector of the autoencoder is the reconstruction error. In the train-
ing phase, we use the attribute information of the machine as the
condition, and the attribute labels are encoded and input into AE
for training along with the audio features. In the test phase, the
test data uses the AE model of the corresponding machine, and we
calculate the Mahalanobis distance according to different attributes,
and take the minimum value as the anomaly score. In addition, we
perform score normalization by source and target domains. For the
seven machines in the evaluation set, since the attribute labels and
domain labels of the test set are unknown, we train an attribute clas-
sifier and domain classifier, and then use the predicted labels to get
anomaly scores.

The network architecture we use is convolutional AE [18]. 128-
dimensional log-Mel spectrogram features are used as input to the
network. The batch size of training is set as 256 and Adam opti-
mizer is used to train the model with the learning rate of 0.0005.
The results of conditional AE are shown in Table 2.
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2.3. Ensemble

Considering that the results of the above several anomaly detection
methods are complementary, so we can ensemble them. We com-
bined these models by grid search [19]. We explored four different
sets of weights as the final four systems submitted, and Table 3
shows our best results on the development set through system en-
sembles.

3. CONCLUSIONS

In this paper, we propose a method for anomalous sound detection
based on attribute classification and conditional AE. Experimen-
tal results show that by integrating our different methods, we can
achieve better results than the baseline. In the future, we will de-
velop more effective generative-based anomalous sound detection
methods to deal with domain generalization and first-shot problems.
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