
Detection and Classification of Acoustic Scenes and Events 2023 Challenge

THE NERC-SLIP SYSTEM FOR SOUND EVENT LOCALIZATION AND DETECTION OF
DCASE2023 CHALLENGE

Technical Report

Qing Wang1, Ya Jiang1,∗, Shi Cheng1,∗ Maocheng Hu2, Zhaoxu Nian1,
Pengfei Hu1, Zeyan Liu1, Yuxuan Dong1, Mingqi Cai3, Jun Du1, Chin-Hui Lee4

1 University of Science and Technology of China, Hefei, China
{qingwang2, jundu}@ustc.edu.cn,

{yajiang, chengshi, zxnian, hudeyouxiang, xy671231, anonymous}@mail.ustc.edu.cn
2 National Intelligent Voice Innovation Center, Hefei, China, {mchu2}@nivic.cn

3 iFLYTEK, Hefei, China, {mqcai}@iflytek.com
4 Georgia Institute of Technology, Atlanta, USA, {chl}@ece.gatech.edu

ABSTRACT

The technical report details our submission system for Task 3 of
the DCASE2023 Challenge: Sound Event Localization and De-
tection (SELD) Evaluated in Real Spatial Sound Scenes. To ad-
dress the audio-only SELD task, we apply the audio channel swap-
ping (ACS) technique to generate augmented data, upon which a
ResNet-Conformer architecture is employed as the acoustic model.
Additionally, we introduce a class-dependent sound separation (SS)
model to tackle overlapping mixtures and extract features from the
SS model as prompts to perform SELD for a specific event class.
In the case of audio-visual SELD task, we leverage object detection
and human body key point detection algorithms to identify potential
sound events and extract Gaussian-like vectors, which are subse-
quently concatenated with acoustic features as the input. Moreover,
we propose a video data augmentation method based on the ACS
method of audio data. Finally, we present a post-processing strategy
to enhance the results of audio-only SELD models with the location
information predicted by video data. We evaluate our approach on
the dev-test set of the Sony-TAu Realistic Spatial Soundscapes 2023
(STARSS23) dataset.

Index Terms— Sound event localization and detection, speech
separation, data augmentation, model ensemble, Conformer, human
keypoint detection, object detection

1. TRACK A: AUDIO-ONLY INFERENCE

The proposed approach employs several effective audio data aug-
mentation techniques to generate training data for sound event lo-
calization and detection (SELD). Subsequently, Resnet-Conformer
[1], a robust deep neural network (DNN) architecture, is trained for
SELD systems of different target representations. [2,3] adopted two
parallel branches for sound event detection and direction-of-arrival
(SEDDOA) estimation with a multi-task learning framework. Shi-
mada et. al. [4, 5] proposed an activity-coupled Cartesian DOA
(ACCDOA) vector with the length indicating event activity, which
was later extended to a multi-ACCDOA version. To enhance the
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SELD performance, Conv-TasNet [6], a sound separation (SS) net-
work, is implemented. Finally, to obtain robust SED and DOA es-
timation, a combination of model ensemble and post-processing is
employed. This technical report will provide a detailed description
about the five parts of the approach: data augmentation, sound sep-
aration, network training, model ensemble, and post-processing.

1.1. Audio Data Augmentation

The official training dataset contains 24 hours of data, among which
only about 4 hours are recorded in real sound scenes. Therefore,
data augmentation techniques are necessary, and we adopted three
such methods for SELD and SS.

One of the methods is ACS spatial augmentation, which was
proposed in our previous work [3]. The method utilizes the ro-
tational properties of the recorded data set to increase DOA rep-
resentations. The other method is to simulate new multi-channel
data by using provided spatial room impulse responses (SRIRs) and
sound samples selected from several public datasets. Specifically,
single-channel sound samples extracted from FSD50K dataset [7]
are convoluted with SRIRs to generate 1-minute long multi-channel
scene recordings with a maximum polyphony of 3. This results in
20 hours of data. Moreover, sound event clips from AudioSet [8]
and the DCASE2023 Task 3 dev-train split are used to build a train-
ing data set for separation model. We generated a total of 39 hours
of sound event clips, which is much higher than the development
dataset of the DCASE2023 Task 3.

1.2. Fusing SS and SELD: SS-SELD

We have utilized labeled segments of individual sound events from
Audioset [8], in addition to the DCASE2023 Task 3 dev-train data,
to construct training data for sound separation. The simulated data
was used to train SS models for specific classes based on Conv-
TasNet architecture. As for the SELD model, we used SEDDOA
output format for fusion.

Subsequently, we used the trained SS model as the front-end
and separated the augmented data with ACS, aiming at extracting
specific class sounds while removing the sounds of other classes.
This approach effectively mitigates detection errors of low-intensity
classes with significant overlap. We extracted log-mel spectra for
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separated data and concatenated them with original features for
SELD training. The framework of the method is shown in Figure 1.

Figure 1: Framework of our proposed SS-SELD method. Log mel
represents log-mel spectra features.

1.3. Network Training

In the proposed system, only FOA format data is adopted as the
training data. Log-mel spectra features are extracted from multi-
channel audio of 24 kHz sampling rate using 1024-point discrete
Fourier transform from a 40 msec Hanning window and 20 msec
hop length. Then 4-channel log-mel spectra features and 3-channel
intensity vectors are concatenated together to get the 7-channel fea-
ture. And 4-channel log-mel spectra features extracted from the
separated sound are concatenated to get the 11-channel feature in-
put. The data size can be augmented to 8 times by applying the ACS
strategy, which results in about 192 hours of data. As for sound sep-
aration, about 40 hours of single event clips are obtained. To train
the SS model, we have generated a 40-hour dataset for each class,
where sound events of all other classes are considered inferences.
We utilized Conv-TasNet [6] as the separation network and Resnet-
Conformer as the main network for SELD [9].

1.4. Model Ensemble

Two model ensemble strategies are utilized to improve the general-
ization ability and achieve better results. The ACCDOA and multi-
ACCDOA fusion strategy is proposed to fully utilize the advantages
of these two modeling methods. ACCDOA-based modeling method
can provide accurate boundary information. Multi-ACCDOA-based
method can process the overlap segments of the same event class but
may introduce false alarms. Here the boundary information from
ACCDOA is combined with the SED and DOA estimation of multi-
ACCDOA. Assume class c happened at frame t in ACCDOA esti-
mation. If the SED estimation of multi-ACCDOA at frame t is the
same as ACCDOA, we will calculate the angle difference between
the two estimated events. If the difference of DOA estimation is
higher than a specific threshold, we think the DOA estimated by
multi-ACCDOA model is more accurate. Otherwise we think these
two events are exactly the same event, and the final DOA estimation
will be the mean value of these two methods.

1.5. Post-processing

Two post-processing strategies are adopted to further improve the
system performance. First, when testing the input data is cut into
20-second long segments with a 1 second hop length. Then the

result of each frame is the mean value of the time-overlapped seg-
ments. Tested on time-overlapped segments can decrease the vari-
ance of the results. Second, dynamic threshold is adopted to im-
prove the SED performance. We also explore the fusion of SS-
SELD results and single SELD results. For a specific class c,
we compare the scores between SS-SELD and SLED models. If
SS-SELD is better than SELD, we believe the proposed SS-SELD
model has a better discernment of class c and employ a class-level
fusion between SS-SELD and SELD predictions.

2. TRACK B: AUDIO-VISUAL INFERENCE

In the proposed audio-visual SELD model, we design a video data
augmentation method to match the audio data after performing
audio channel swapping. To leverage the video information, we
adopt a feature-level fusion approach, constructing an audio-visual
Resnet-Conformer SELD network that utilizes both audio features
and Gaussian features extracted from video frames. Additionally,
we develop a decision-level fusion scheme to complement the pre-
diction results of the audio modality with video data. Model ensem-
ble and post-processing in Track A are also adopted to get the final
SED and DOA estimation.

2.1. Video Data Augmentation

The size of Sony-Tau Realistic Spatial Soundscapes 2023
(STARSS23) audio-video dataset [10] is 3.8 hours, which is too
small to train a robust audio-visual SELD network. In audio-only
SELD system, we perform ACS [3] to expand the audio data by
a factor of seven. The STARSS23 dataset includes simultaneous
360◦ video recordings with a resolution of 1920 × 960, corre-
sponding to an azimuth angle range of [180◦,−180◦] and an ele-
vation angle range of [−90◦, 90◦]. We propose a video pixel swap-
ping (VPS) approach as shown in Table 1 to expand the video data
and match the augmented audio data. Take one transformation,
ϕ = ϕ + π, θ = θ for example, which means the azimuth angle is
rotated by 180°, while the elevation angle remains the same. Based
on such a transformation, the horizontal pixel points are panned by
960 pixel points in the negative direction while the vertical pixel
points remain unchanged in the corresponding video image.

Table 1: The VPS augmentation approach for video data corre-
sponding to the ACS approach, where x and y denote the horizontal
pixel point and vertical pixel point in video image frames.

DOA transformation Pixel point swapping
ϕ = ϕ− π/2, θ = −θ x = (x + 1440) mod 1920, y = 960 - y
ϕ = −ϕ− π/2, θ = θ x = (-x + 1440) mod 1920, y = y

ϕ = ϕ, θ = θ x = x, y = y
ϕ = −ϕ, θ = −θ x = 1920 - x, y = 960 - y

ϕ = ϕ+ π/2, θ = −θ x = (x + 480) mod 1920, y = 960 - y
ϕ = −ϕ+ π/2, θ = θ x = (-x + 480) mod 1920, y = y
ϕ = ϕ+ π, θ = θ x = (x + 960) mod 1920, y = y

ϕ = −ϕ+ π, θ = −θ x = (-x + 960) mod 1920, y = 960 - y

2.2. Video Keypoint Detection and Object Detection

We perform human keypoint detection and object detection on ev-
ery frame of the video. For human keypoint detection, we adopt
a top-down strategy [11]. Firstly, based on the mmdetection [12]
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framework, we employ a faster-rcnn-based two-stage target detec-
tion model [13] to predict human bounding boxes and correspond-
ing confidences. The model is pre-trained on the COCO object de-
tection dataset [14]. By setting a threshold of 0.3, we filter out
human bounding boxes with lower confidence scores. Next, we
scale the filtered human bounding boxes to 384×288 and feed them
into the keypoint detection model HRNet [15] based on the mm-
pose framework [16]. The model is pre-trained on the COCO-
WholeBody dataset [17]. Based on the cropped human bounding
boxes, we choose the coordinates for 5 keypoints of the human
body: mouth, left hand, right hand, left foot and right foot.

Regarding object detection, we resize the video images to
640×640, and adopt the PP-YOLOE model based on the PaddleDe-
tection framework [18] to detect the bounding boxes of the target
event classes. The confidence threshold is set to 0.7.

2.3. Audio-Visual SELD Network Training

The audio-visual SELD network takes audio features and visual fea-
tures as inputs. The audio features are extracted in the same way as
the audio-only SELD network. We transform the bounding boxes of
the target object or human keypoint, which are generated by select-
ing two video frames in one second, into two Gaussian-like vectors
of 64 dimensions [19]. These vectors represent the likelihood of ob-
jects being present along the image’s horizontal and vertical axes.
We add the Gaussian-like vectors of all detected objects and per-
form a normalization operation to generate location-based features.
We repeat the 2-channel video features several times along the time
dimension and concatenate them with the 7-channel 64-dimensional
audio features. This concatenated feature set is then fed into the
Resnet-Conformer network for training. Additionally, we have im-
plemented the outputs of three different modeling approaches in
the audio-visual SELD network: ACCDOA, multi-ACCDOA and
SEDDOA.

2.4. Decision-level Fusion and Post-processing

We adopt two schemes to make better use of the video information.
The first scheme is based on the approximate conversion relation-
ship between the pixel coordinates in image and the DOA coordi-
nates in real-world. We design a matching rule to generate more
accurate DOA estimation by utilizing the keypoint detection results
and the object detection results.

The details of the decision-level fusion scheme are as follows.
The DOA predictions may be inaccurate. Intuitively, visual-based
localization methods tends to yield more accurate results in compar-
ison to audio-based ones. Therefore, for certain categories, we em-
ploy object detection techniques to enhance the accuracy of DOA
predictions by audio model. Taking Figure 2(a) as an example, it
displays the DOA prediction d of the category Male Speech at frame
t that generated by the audio model. To refine the DOA prediction,
firstly, we detect all the mouths present in the visual modality at the
same frame, and depict the detection results d1, . . . , d5 in Figure
2(b). Secondly, we select a candidate from d1, . . . , d5 that is clos-
est to d, and denote it as d̂. Thirdly, if the angular distance between
d̂ and d is less than a pre-defined threshold value θ = 30◦, we re-
place d with d̂ as the final DOA estimation, which is shown in Fig-
ure 2(c). Figure 2(d) lists the corresponding relationships between
audio categories and visual objects. We exclude several audio cate-
gories due to the lack of corresponding visual objects (e.g., Knock)
or poor visual detection performance (e.g., Door).

(a) (b)

(d)(c)
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Figure 2: The illustration of the decision-level fusion. (a) The DOA
predictions of the category Male Speech. (b) The detection results
of mouths. (c) The final result with the decision-level fusion. (d)
Corresponding relationships between audio categories (Grey) and
visual objects (Blue).

The second scheme is implemented by model ensemble and
post-processing, as mentioned in Section 1.4 and 1.5. We employ
a posteriori fusion of the audio-only model and the audio-visual
model on 10-second long segments with a 1-second hop length. We
also apply dynamic threshold on the SED output.

3. RESULTS ON DEVELOPMENT DATASET

We evaluate our proposed method on the development dataset of
STARSS23 with joint localization and detection metrics [20].

For Track A, we generate a larger training set with the above
mentioned data augmentation approaches, namely audio channel
swapping and multi-channel data simulation. Table 2 shows the ex-
perimental results of the proposed method for development dataset
of Track A. “ACCDOA” represents the ACCDOA-based model-
ing method and “Multi-ACCDOA” represents the multi-ACCDOA-
based method, both of which used post-processing strategies. “SS-
SEDDOA” denotes the fusion method of SS and SELD. As shown
in the table, each proposed single model outperforms the two base-
line systems by a large margin. By fusing the SELD results pre-
dicted by ACCDOA and multi-ACCDOA methods, further im-
provements are achieved as shown in the last row of Table 2.
“Model Ensemble+PP” denotes employing model ensemble and
post-processing strategies upon the above systems.

Table 2: Experimental results of the audio-only SELD systems for
development dataset using FOA format data.

ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑

Baseline-FOA 0.57 0.30 21.60 0.48
SEDDOA 0.41 0.59 14.05 0.70
ACCDOA 0.42 0.59 13.72 0.72

Multi-ACCDOA 0.44 0.58 13.75 0.74
SS-SEDDOA 0.40 0.64 13.40 0.74

Model Ensemble+PP 0.38 0.66 12.81 0.75

For Track B, we fine-tune the audio-visual SELD model based
on the audio pre-trained parameters, utilizing about 30 hours of
audio-video data. Table 3 shows the experimental results of the pro-
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posed audio-visual methods for development dataset. As shown in
Table 3, the proposed audio-visual systems outperforms the base-
line system by a large margin. Performance gain is achieved by
employing model ensemble and post-processing strategies. With
the decision-level fusion scheme, the SELD metrics are improved,
especially for localization error. A small localization error can help
to improve detection metrics, as shown in the last row of Table 3.

Table 3: Experimental results of the audio-visual (AV) SELD sys-
tems for development dataset using FOA format data.

ER20◦ ↓ F20◦ ↑ LECD ↓ LRCD ↑

Baseline-AV Model 1.07 0.14 60.40 0.33
AV SEDDOA 0.41 0.56 14.47 0.64
AV ACCDOA 0.42 0.59 14.06 0.70

AV Multi-ACCDOA 0.45 0.58 14.62 0.71
Model Ensemble+PP 0.39 0.63 13.12 0.73
Decision-level Fusion 0.37 0.68 10.76 0.73
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