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ABSTRACT

In this report, we propose an anomalous sound detection (ASD)
method for DCASE 2023 Challenge Task 2. Our proposed method
is an extension of the serial approach using an outlier exposure-
based feature extractor and an inlier modeling-based anomalous de-
tector. We newly employ the normalizing flow as the inlier model
and jointly optimize it with the feature extractor in an end-to-end
manner. Furthermore, in order to deal with the domain shift, we
use some domain generalization techniques, such as the domain-
invariant latent space modeling in the normalizing flow and mixup
to generate the pseudo-target domain data. The anomaly scores can
be calculated directly using the normalizing flow or additionally us-
ing other inlier models separately trained with the optimized fea-
ture embeddings. Our final system is made by the ensemble and
achieves 69.78 % in the harmonic mean of the area under the curve
(AUC) and partial AUC (p = 0.1) over all machine types and do-
mains on the development set.

Index Terms— anomalous sound detection, outlier exposure,
normalizing flow, domain generalization, mixup

1. INTRODUCTION

This report provides the description of our submitted systems for the
DCASE 2023 Challenge Task 2 [1]. This task focuses on anomalous
sound detection (ASD) which aims to detect anomalous behavior of
the factory machine from its sound recordings. The main difference
in this task between DCASE 2022 [2] and 2023 is the limitation
of the development dataset. Specifically, the variation of the nor-
mal training data expressed as the “section” is limited. Also, the
machine types are completely different for development and eval-
uation, and the dataset for hyperparameter tuning is not provided.
There is a need to create systems that achieve high performance
within these limitations.

As our system, we developed the extension of the conventional
serial approach Serial-OE [3], [4]. Serial-OE has two stages for
training: training of feature extractor and inlier models. First,
the feature extractor is trained by the classification of normal and
pseudo-anomalous data, and the classification of the difference in
the normal data using sections. Next, the inlier models are trained
on the features of the normal data obtained by the feature extrac-
tor created in the first stage. During inference, we can identify the
anomalous sound because the feature deviates from the distribution
of those of the normal sound. We extend this Serial-OE by employ-
ing the normalizing flow as an inlier model and jointly optimizing
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Figure 1: Overview of the proposed method

it with the feature extractor. For the training of the feature extrac-
tor, we utilize attribute information instead of section IDs since they
are not provided in DCASE 2023 Challenge. The anomaly score is
calculated by directly using the log-likelihood of the normalizing
flow or using other inlier models as in the Serial-OE. We expect
that the joint optimization will result in constructing a better feature
embedding space. Furthermore, we adopt domain generalization
techniques for inlier models to improve performance. For the nor-
malizing flow, we use the domain-invariant latent space modeling
by discarding the latent variables which have the domain-dependent
information [5]. For the training of the other inlier models, we gen-
erate the pseudo-target domain training data by mixup the source
and target domain data. In addition to the domain generalization
techniques, we use a simple weighting of the anomaly score based
on the power of the signal. This technique enables us to properly
handle the event absence period of the recordings.

We conduct an experimental evaluation using the training and
test data of DCASE 2023 Task 2 Challenge development set [6], [7].
The experimental results show that all of our systems outperform
the official baselines in the official metric which is the harmonic
mean of the area under the curve (AUC) and partial AUC (p = 0.1)
overall machine types and domains. Especially, the final submitted
system created by an ensemble of several systems achieves 69.78%
in the official metric while that of the baseline is 55.02%.
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2. SERIAL-OE

As the base of our system, we used Serial-OE [4] which uses the
outlier exposure (OE) [8]-based feature extractor and inlier model-
ing serially. Serial-OE has two stages for the training. First, the fea-
ture extractor is trained with the multi-task loss function LSerialOE.

LSerialOE = Lmachine + λsectionLsection, (1)

where λsection is a hyperparameter. The first term Lmachine is a loss
function of the basic OE and is calculated as follows:

Lmachine = − 1

M

M∑
i=1

{tilog (σ (gmachine (fFE (xi))))

+(1− ti)log (1− σ (gmachine (fFE (xi))))} ,

(2)

where xi (i = 1, 2, ...,M) is audio input, ti (i = 1, 2, ...,M)
represents the machine type, M is a mini-batch size, fFE is a
feature extractor, gmachine is a function that transforms the high-
dimensional embeddings to the scalar, and σ is a sigmoid function.
ti is 1 for the target machine type and 0 for the other machine types
(i.e., pseudo-anomalous data). In [4], gmachine is an affine trans-
formation of the norm of the embeddings. In addition to Lmachine,
Serial-OE uses the following Lsection to construct the detailed fea-
ture space for normal sounds:

Lsection = − 1

K
∑M

i=1 ti

M∑
i=1

K∑
k=1

ti {yi,klog (σ (gsection (fFE(xi))))

+(1− yi,k)log (1− σ(gsection (fFE(xi))))} ,
(3)

where each machine type has K section IDs and normal data xi be-
longs to one of them. yi,k (i = 1, 2, ..., N, k = 1, 2, ...,K) is the
one-hot vector for the section ID where yi,k is 1 for the k th ele-
ment and 0 for the other elements when the section ID is k. gsection
is a linear transformation. This multi-task training constructs a bet-
ter embedding space in which both anomalous sounds that are not
similar to normal sounds and anomalous sounds that are similar to
normal sounds are distinguished from normal sounds.

Next, we train inlier models such as Gaussian mixture models
(GMM) [9], [10] and k-nearest neighbor algorithm (KNN) [11] with
normal data. These inlier models are used as the anomaly detector
h and the anomaly score ai is calculated as follows:

ai = A (h (fFE (Xi))) , (4)

where Xi is a set of S segments that divide xi into T seconds with
overlap and A is an aggregator of the anomaly scores such as aver-
age operation. Serial-OE has achieved high performance by model-
ing normal sound distribution in the suitable feature space for ASD.

3. PROPOSED METHOD

Based on the success of the Serial-OE, we extend it by using a nor-
malizing flow as a neural inlier model and jointly optimizing it with
a feature extractor. Figure 1 shows an overview. In the first step, we
jointly optimize the networks with the following LOEFlow.

LOEFlow = LSerialOE + λFlowLFlow, (5)

LFlow = −
1

M

M∑
i=1

log pX(xFE
i ), (6)

log pX(xFE
i ) = log pZ(fFlow(xFE

i )) + log

∣∣∣∣∣det
(
∂fFlow(xFE

i )

∂xFE
i

)∣∣∣∣∣ ,
(7)

where xFE
i = fFE(xi), pX is an input data distribution, and pZ is

a standard normal distribution N(0, 1). fFlow is a composition of
multiple invertible transformations and we employ a FastFlow [12]
as fFlow. We expect that the end-to-end training with LOEFlow en-
ables the feature extractor to extract the more suitable feature for
normalizing flow and make a better embedding space where the
anomalous data is distinguished from the normal data. Also, in the
DCASE2023 Challenge, each machine type has only one section.
Therefore, we use the following Latt instead of Lsection.

Latt = − 1

KattM

M∑
i=1

Katt∑
k=1

{
yatt
i,k log (σ (gatt (fFE(xi))))

+(1− yatt
i,k )log (1− σ(gatt (fFE(xi))))

}
,

(8)

where gatt is a linear transformation. The attribute information of
the target machine has Katt values and yatt

i,k is a one-hot vector for
it. For the pseudo-anomalous data, yatt

i,k is set to 0.
In the second step, we train the additional inlier models

such as GMM and KNN as in the Serial-OE. In the inference,
the anomaly score is calculated as in Eq. 4 directly using the
negative log-likelihood of the normalizing flow as h(xFE

i ) =
− log pZ(fFlow(x

FE
i )) or using additional inlier models.

3.1. Domain generalization technique

One of the main points of DCASE 2023 Challenge Task 2 is domain
generalization. Therefore, we introduce two domain generalization
techniques into the training of the inlier models.
Domain-invariant latent space modeling: To alleviate the domain
shift in the ASD with the normalizing flow, we use domain-invariant
latent space modeling [5]. In this framework, some latent variables
zd are constrained to follow N(kv, 1) while the others zc are con-
strained to follow N(0, 1), where k is a hyperparameter and v rep-
resents the physical parameter which causes domain shift (e.g., op-
eration velocity). Creating zd makes zc invariant to the physical
parameter and the domain shift-invariant anomaly scores are cal-
culated as a = − log pZ(zc). We introduce this domain general-
ization technique by splitting channels of the latent variables of the
FastFlow into zc and zd.
Generating pseudo-target domain data by mixup: To alleviate
the domain shift in ASD with additional inlier models, we use the
pseudo-target domain data for the training of the second step. The
pseudo-target domain data is generated by mixup the source domain
data with the target domain data. Utilizing pseudo-target domain
data for the training reduces false positives due to the domain shift.

3.2. Weighting anomaly score

To further improve the performance of our systems, we handle the
event absence problems. In the DCASE 2023 Challenge Task 2,
the recordings of some machine types (e.g., ToyCar and ToyTrain)
have an event-absence period, especially at the beginning and end
of the audio. To prevent false positives in the event-absence period,
we adopt the weighted mean as the aggregator A. The weight is
calculated based on the power of the signals and it is pre-processed
with a high-pass filter to remove the effect of the noise. For the
ASD with the normalizing flow, we directly apply weighting to the
anomaly score map provided by FastFlow which reflects the shape
of the input feature (i.e., it has a time and frequency axis).
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Table 1: Summary of our systems.

Systems loss function Domain-invariant
modeling [5]

OE Lmachine Not applicable
OE-Flow Lmachine + λFlowLFlow Not applied
OE-DFlow Lmachine + λFlowLFlow Applied
SerialOE-Flow LSerialOE + λFlowLFlow Not applied
SerialOE-DFlow LSerialOE + λFlowLFlow Applied

4. EXPERIMENTAL EVALUATIONS

4.1. Systems
We developed several types of the proposed method as shown in
Table 1. For the machines that have multiple attribute parame-
ters, multiple systems are developed for OE-DFlow and SerialOE-
DFlow using each parameter separately. The separately developed
systems using a different attribute item were ensembled for each
inlier model and its hyperparameter.

SerialOE-Flow and SerialOE-DFlow did not use additional in-
lier models because there are not enough samples to model the fea-
ture embeddings space for each parameter in the target domain. The
other systems use additional inlier models and ensemble the twenty
inlier models with several hyperparameters including the normaliz-
ing flow based on the evaluation results of the development set. We
used the official Autoencoder-based baseline systems including the
selective Mahalanobis mode [13] as the baseline.

4.2. Experimental setups
We conducted an experimental evaluation using the DCASE 2023
Task 2 Challenge development sets (ToyADMOS2 [6], MIMII
DG [7]). The development sets included seven machine types: bear-
ing, fan, gearbox, valve, slider, ToyCar, and ToyTrain. The train-
ing data had 1,000 samples of normal data for each machine type,
of which 990 samples are in the source domain and ten samples
are in the target domain. The test data had 50 samples of normal
and anomalous data for each machine type and each domain. Each
recording was a 10 or 12-second single channel segment sampled
at 16 kHz. For the training, we used 85 % of the source domain
data and six samples of the target domain data. The remaining sam-
ples were treated as the validation set. For the pseudo-anomalous
data, we used the training data of the non-target machine type and
additional training datasets of the DCASE 2023 Task 2 Challenge.

The amplitude of the audio input sequence was standardized
to have a mean of 0.0 and a variance of 1.0. The audio input se-
quence was extracted as Mel-spectrogram with a window size of
128ms, a hop size of 16ms, and 224 Mel-spaced frequency bins
in the range of 50Hz to 7800Hz in 5.0 seconds. The feature was
passed to the fFE of ResNet-18 [14]. We used a linear transfor-
mation for gmachine. For the OE in Table 1, we trained the feature
extractor fFE for 150 epochs with an OneCycleLR [15] of learning
rate 0.001. For the other systems, we trained the networks for 250
epochs with a fixed learning rate 0.0001. The optimization algo-
rithm was AdamW [16] and the batch size was 128. When creating
mini-batches, we used a batch sampler so that the value of t is 1:1.
λsection in Eq. 1 was set to 5 and λFlow in Eq. 5 was set to 10−7.
We used a mixup in the training of the feature extractor. This mixup
aimed to obtain intermediate features between normal and pseudo-
anomalous data or different parameters of normal data while mixup
in Sec. 3.1 aimed to generate pseudo-target domain data for the
training of the additional inlier models. The normalizing flow was
trained with only samples that do not contain pseudo-anomalous

components. For the domain-invariant latent space modeling in the
normalizing flow, we also used categorical labels by expressing it
as an integer value v. When using the data generated by mixup of
normal data with different parameters, we used the parameter of the
dominant one for v. The hyperparameter k was set to 5 divided by
the minimum distance of the parameters. We used eight of the 512
channels of the latent variables as zd.

During inference, we divided the original clips into S segments
with 75% overlapping. As the additional inlier model, we used
GMM and KNN, and the hyperparameter was the number of com-
ponents for GMM or the number of neighbors for KNN, where it
was one of {1, 2, 4, 16 and 32}. The GMM used the negative log-
likelihood as the anomaly score, while the KNN used the distance
to the nearest points with Mahalanobis distance. For the training
data in the second step, we had three options: source domain only,
pseudo-target data, and original data from both domains, where this
selection was treated as a hyperparameter. The aggregator A was
weighted mean described in Sec. 3.2 for ToyCar and ToyTrain and
mean for the others. In the evaluation set, we used a weighted mean
for ToyDrone, ToyNscale, ToyTank, and Vacuum. The passband
and stopband edge frequencies of the high-pass filter used in calcu-
lating the weight were set to the 4000 kHz and 3500 kHz.

4.3. Experimental results
Tables 2, 3, and 4 show the performance of the source domain, target
domain, and both domains, respectively. Each table summarizes the
evaluation results of both the original system in Table 1 and four
submitted systems that are made by ensembling the several systems.

As a result, all of our final submitted systems and original sin-
gle systems outperformed the performance of the official baselines.
We can also see that joint optimization methods such as OE-Flow
and OE-DFlow outperformed the OE. Considering that the normal-
izing flow has not been used as the anomaly detector h in the OE-
DFlow, it can be assumed that a better feature embedding space has
been made through the joint optimization of the feature extractor
and the normalizing flow. We can confirm that SerialOE-DFlow has
also achieved competitive results except for the specific case (valve
in the target domain). In our experiments, we confirm the perfor-
mance improvement by domain-invariant latent space modeling in
the source domain. A detailed analysis is included in future work.

5. CONCLUSION

We proposed ASD methods for the DCASE 2023 Challenge Task 2.
The proposed method was an extension of the Serial-OE and we em-
ployed a normalizing flow as the inlier model. The inlier model and
feature extractor networks were jointly optimized with a multi-task
loss function. The anomaly scores were calculated using the nor-
malizing flow and additional inlier models. In addition to propos-
ing a new ASD method, we adopted some techniques to handle the
domain shift and event absence problems. In the evaluation of the
development set, all of our systems outperform the baselines and
they achieved absolute improvements of up to 14% in the official
score. Also, the results suggested that joint optimization of the fea-
ture extractor with the normalizing flow could construct a better
feature space for ASD. The future work includes a detailed analysis
of our framework of joint optimization and its improvement.
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Table 2: Evaluation results in the source domain. The values represent AUC [%] for the source domain. The value in the column “hmean”
represents the harmonic mean of AUC over all machines.

System Inlier models or systems used for ensemble bearing fan gearbox slider valve ToyCar ToyTrain hmean

Baseline (MSE) 65.92 80.19 60.31 70.31 55.35 70.10 57.93 64.79
Baseline (Mahalanobis) 65.16 87.10 71.88 84.02 56.31 74.53 55.98 68.84

OE GMM and KNN 72.48 71.12 86.92 98.48 93.76 55.84 50.12 71.40
OE-Flow GMM, KNN, and Normalizing flow 75.64 73.76 85.08 99.84 93.20 54.68 54.44 72.97
OE-DFlow GMM and KNN 73.04 79.28 81.96 99.52 98.24 60.04 56.92 75.30
SerialOE-Flow Normalizing flow 67.64 51.40 68.40 98.12 99.04 57.12 61.40 68.00
SerialOE-DFlow Normalizing flow 74.32 70.88 68.44 98.96 94.64 63.28 69.84 75.29

Submitted system1 Our all methods 73.16 72.76 83.12 99.80 97.64 59.28 67.84 76.66
Submitted system2 OE-DFlow and SerialOE-DFlow 73.68 85.64 77.16 99.52 96.92 64.20 69.08 78.98
Submitted system3 OE, OE-Flow, and OE-DFlow 74.12 75.72 87.20 99.72 96.32 59.88 53.16 74.40
Submitted system4 Our methods except for SerialOE-Flow 74.44 78.04 83.72 99.72 97.20 62.36 68.88 78.60

Table 3: Evaluation results in the target domain. The values represent AUC [%] for the target domain. The value in the column “hmean”
represents the harmonic mean of AUC over all machines.

System Inlier models or systems used for ensemble bearing fan gearbox slider valve ToyCar ToyTrain hmean

Baseline (MSE) 55.75 36.18 60.69 48.77 50.69 46.89 57.02 49.59
Baseline (Mahalanobis) 55.28 45.98 70.78 73.29 51.40 43.42 42.45 52.37

OE GMM and KNN 45.60 67.84 71.88 90.08 100.00 53.36 55.28 64.51
OE-Flow GMM, KNN, and Normalizing flow 59.32 57.44 78.60 94.72 99.60 59.00 54.72 68.09
OE-DFlow GMM and KNN 61.32 64.76 76.80 89.88 100.00 61.84 53.96 69.58
SerialOE-Flow Normalizing flow 58.48 64.44 76.56 93.00 18.60 58.44 54.44 48.05
SerialOE-DFlow Normalizing flow 60.36 78.48 71.84 88.40 11.92 60.52 56.24 40.52

Submitted system1 Our all methods 58.04 71.88 82.44 92.48 97.60 62.12 54.48 70.86
Submitted system2 OE-DFlow and SerialOE-DFlow 60.80 66.52 77.80 90.04 73.88 64.44 55.36 68.25
Submitted system3 OE, OE-Flow, and OE-DFlow 57.48 70.36 77.56 91.96 100.00 59.60 54.80 69.72
Submitted system4 Our methods except for SerialOE-Flow 57.40 70.96 79.44 91.88 98.68 62.48 55.24 70.54

Table 4: Evaluation results. The values represent the harmonic mean of AUC and pAUC over all domains. “official” represents the official
score which is calculated by harmonic mean of AUC and pAUC over all machine types and domains.

System Inlier models or systems used for ensemble bearing fan gearbox slider valve ToyCar ToyTrain official

Baseline (MSE) 56.67 52.59 57.86 57.18 52.33 54.89 54.16 55.02
Baseline (Mahalanobis) 56.71 59.90 64.60 68.46 52.83 52.83 48.23 56.91

OE GMM and KNN 54.74 67.78 69.94 87.24 93.47 52.98 51.03 64.84
OE-Flow GMM, KNN, and Normalizing flow 63.52 64.49 74.20 93.35 92.40 55.02 52.52 67.65
OE-DFlow GMM and KNN 62.02 71.66 72.88 86.53 97.23 58.08 53.03 68.82
SerialOE-Flow Normalizing flow 60.95 54.84 67.49 88.92 36.25 54.56 54.50 56.01
SerialOE-DFlow Normalizing flow 63.24 67.97 66.33 83.39 26.22 58.88 57.11 53.76

Submitted system1 Our all methods 61.64 71.64 75.53 90.22 90.49 57.28 55.89 69.37
Submitted system2 OE-DFlow and SerialOE-DFlow 61.97 74.19 71.41 86.49 76.31 60.11 56.68 68.25
Submitted system3 OE, OE-Flow, and OE-DFlow 61.05 73.19 74.51 89.86 95.78 56.70 51.98 68.69
Submitted system4 Our methods except for SerialOE-Flow 61.05 74.22 74.10 89.63 91.15 58.36 56.48 69.78
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