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ABSTRACT

In this report, we describe our submissions for the task 4 of Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2023 Challenge: Sound Event Detection in Domestic Environ-
ments. Our methods are mainly based on Convolutional Recur-
rent Neural Network. We propose to utilize sound activity detec-
tion (SAD) as an auxiliary task for sound event detection and use a
multi-task learning approach to train the two tasks simultaneously,
thus improving the model generalization performance. Moreover,
we proposed a new local weak prediction to improve the PSDS2
index. To prevent overfitting, we adopt data augmentation using
hard mixup, pitch shift, and time shift. Besides, we utilize external
data and a pretrained model named Beats to further improve perfor-
mance, and try an ensemble of multiple subsystems to enhance the
generalization capability of our system. Our final systems achieve
a PSDS1/PSDS2 score of 0.523/0.890 on development dataset.

Index Terms— DCASE, sound event detection, mean teacher,
semi-supervised learning

1. INTRODUCTION

Sound event detection (SED) is the task of recognizing sound events
and locating them temporally in audio recordings. Due to the lack
of data with frame-level annotations, semi-supervised sound event
detection (SS-SED) [1, 2] has received extensive attention.

In this report, we propose the sound event detection system
based on the offical baseline. The baseline utilizes the Convolu-
tional Recurrent Neural Network (CRNN) as the model architec-
ture and apply Mean Teacher (MT) [3]. The baseline also provides
pre-trained model named Beat to obtain embedding to help model
training. In our proposed approach, there are two main improve-
ments. Firstly, we adoped Sound Activity Detection (SAD) as an
auxiliary task, and train SOOD and SED in a multi-task training
manner. Since SAD is good at detecting event boundaries, SAD can
help SED improve the performance of boundary detection through
the multi-task training. The SAD labels can be automatically de-
rived from SED labels. Similar to semi-supervised SED, we also
train SAD in a semi-supervised way. Secondly, the existing weak
prediction methods are beneficial to improve the PSDS2 index [4].
However, when the event duration in the audio is short, the label of
the weakly predicted output indicates that the sound persists. This
may result in a decrease in PSDS2 performance. We propose a new
local weak prediction method to improve the PSDS2 metric. The
proposed methods achieve good performance on the PSDS1 and
PSDS2.

2. METHODS

2.1. Sound activity detection

Sound Activity Detection (SAD) is used to detect the presence of
sound activity in audio. Both it and SED involve the detection of
event boundaries. Therefore, the two tasks are very related. We use
multi-task learning to train the two tasks at the same time, so as to
improve the generalization ability of the model. During training, la-
bels for supervised training of SAD can be automatically generated
by SED. Moreover, we use weakly labeled and unlabeled data to
train SAD in a semi-supervised training manner.

2.2. Data preprocessing

All audio are resampled to 16kHz and down sampled to mono. We
use log-mel energies as acoustic feature and extract 128 dimen-
sional log-mel spectrogram using 2048 STFT window with a hop
length of 256. In order to deal with the variable lengths of audio,
we set a maximum padding length. All shorter feature will be zero
padding to the padding length. When it is longer, it will be trun-
cated. In this work, maximum padding length is set to 626.

2.3. Mean teacher

We utilize Mean-Teacher model [3] for semi-supervised learning.
It is a combination of two models: a student model and a teacher
model, having the same architecture. The student model is the one
used at inference while the goal of the teacher is to help the student
model during training. The teacher’s weights are the exponential
average of the student model’s weights. More details are available
in [1].

2.4. Neural network

The SED and SAD tasks in our method share common features ex-
tracted through a shared backbone. Once these shared features are
obtained, they are fed into separate branches for SED and SAD,
respectively. The backbone architecture consists of four convolu-
tional layers with filter sizes of [32, 64, 128, 256]. Each convo-
lutional layer is followed by batch normalization, Context gating,
dropout, and average pooling. The average pooling kernels used are
[[2, 2], [2, 2], [1, 2], [1, 2]]. The SED branch comprises three con-
volutional layers with filter sizes of [256, 256, 256]. The average
pooling kernels for this branch are [[1, 2], [1, 2], [1, 2]]. On the
other hand, the SAD branch consists of two convolutional layers
with filter sizes of [256, 256]. The average pooling kernels used for
this branch are [[1, 2], [1, 4]], To capture the temporal context, both
branches employ a bi-directional Gated Recurrent Unit (Bi-GRU).
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Figure 1: Local weak prediction.

Finally, two dense layers are applied to output prediction scores for
SED and SAD. In addition, we also aggregate the frame-level SED
scores into a clip-level score. We use attention pooling in final pool-
ing layer. In addition, we also adopt a pre-trained model beat [5] to
enhance model performance, and the specific settings are consistent
with those in the baseline.

2.5. Local weak prediction

The existing weak prediction [4] regards the segment-level detec-
tion result as the result of each moment. The post-processing
method effectively improved the PSDS2. However, when an sound
event has a short duration, other frames where the event does not
occur will also be assigned the class label, which may introduce
additional false positives. To address this issue, we improve this ap-
proach and propose local weak predictions, which is shown in Fig.
1.

The specific steps are as follows. First, let Y ∈ RT×C repre-
sent the frame-level posterior probability of the sound event, where
T and C is the size of the time and event class dimension. Then,
the maximum pooling operation is performed on the result, and the
pooling kernel size and offset size are both 40. The obtained result
dimension is 4× C Finally, we extend the result along the time di-
mension to bring it back to 156. In this way, local weak prediction
results are obtained.

3. EXPERIMENTS

3.1. Experiment setup

There are 1578 weakly labeled clips, 14412 unlabeled clips, 10000
synthetic strongly labeled clips and 3470 real strongly labeled clips
used in system development. And the input for our SED systems
consists of the spectrogram feature and the embedding from pre-
trained model. Then, the SED system is trained with different kinds
of data augmentation methods (including frame shift, time mask,
frequency mask, hard mixup [6]). We train the whole system for
200 epochs and the learning rate warms up in the first 50 epochs
with the initial learning rate of 0.001. The batch size is set to 64.

The primary metric is poly-phonic sound event detection scores
[7]. This metric is based on the intersection between events. In
order to test SED system for different scenarios, we set two different
PSDS parameters. In scenario1, the system needs to react fast upon
an event detection. The localization of the sound event is important.
In scenario2, the system must avoid confusing between classes but
the reaction time is less crucial than in the first scenario.

Table 1: Experimental results
extra data pretrained model weak prediction model ensemble PSDS1 PSDS2

0.492 0.705√
0.105 0.839√ √
0.517 0.782√ √ √
0.113 0.885√ √ √
0.523 0.790√ √ √ √
0.115 0.890

3.2. Experimental results

The experimental results are shown in Table 1. Without additional
data and pre-trained models, the PSDS1 and PSDS2 of the model
are 0.492 and 0.705, respectively. After adding the local weak pre-
diction, the PSDS2 index increased to 0.839. After adding addi-
tional data and pre-trained models, the PSDS1 and PSDS2 of the
model are 0.517 and 0.782, respectively. After model integration,
the best PSDS1 and PSDS2 performances are 0.523, 0.890.

4. CONCLUSION

In this report, we present our methods used in the task 4 of DCASE
2023 Challenge. We employ multi-task learning to simultaneously
train SED and SAD, and propose local weak predictions Besides,
we add external data and pretrained model to further improve per-
formance. Our final systems achieve a PSDS1/PSDS2 score of
0.523/0.890 on development dataset.
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