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ABSTRACT

In this report we describe our submission to the DCASE 2023 Task
2: First-Shot Unsupervised Anomalous Sound Detection Challenge,
which has the goal of detecting malfunctioning machines by ana-
lyzing a machine’s sound recording. [1]. We applied the U-Net ar-
chitecture [2], trained to reconstruct partially masked spectrograms
generated from the machine sound recordings. The task turned out
to be challenging, beating the baseline on one out of seven machines
during evaluation.

Index Terms— anomalous sound detection, machine sound
classification, audio signal processing

1. INTRODUCTION

The project covered by this technical report was conducted during a
Machine Learning and Audio class at which Johannes Kepler Uni-
versity our team participated. In the following, we describe our sys-
tem for DCASE 2023 Task 2: First-Shot Unsupervised Anomalous
Sound Detection targeted at identifying malfunctioning machines
from audio recordings.

One of the challenges of anomaly detection is that anomalous
data is often scarce or unavailable, making it difficult to train super-
vised models that can generalize well to previously unseen anoma-
lies. Therefore, unsupervised methods, such as learning a data dis-
tribution from normal sounds, are often preferred, as they do not
require labeled data for training. However, unsupervised classifiers
often suffer from low true positive or high false positive rates. This
is especially the case when the model has to deal with noisy data,
making this a very challenging task.

One major difference from DCASE 2022 Task 2 is that the set
of machine types is completely different between the development
dataset and the evaluation dataset. Hence, the model architecture
and hyper-parameters cannot be tailored to a specific machine type,
making the task even more challenging than in previous years.

2. APPROACH

Our approach is inspired by Yamashita et al. [3], who previously
showed promising results for a similar task with a U-Net [2] archi-
tecture. U-Net consists of CNN encoder and decoder layers with
skip connections. We use 64x64 log mel-spectrograms of provided
audio samples as input. During training, random patches in the in-
put spectrogram are masked, and the model learns to reconstruct
those missing parts. To derive an anomaly score at inference time,
we average the reconstruction error over 256 randomly generated

masks. Since the model is only trained on normal audio, the recon-
struction error for anomalous samples is higher. Hence we use it as
an anomaly score.

Our approach is based on the assumption that normal sounds
can be reconstructed more accurately than anomalous sounds by a
model trained only on normal sounds. We use a U-Net architec-
ture because it has been shown to be effective for image inpainting
tasks, where parts of an image are missing or corrupted. We apply a
similar technique to audio spectrograms, where we randomly mask
patches of the input spectrogram and feed it to the U-Net model to
reconstruct the masked parts of a spectrogram.

2.1. Training

During development, we trained the model on the normal audio
samples from the provided development dataset, which are divided
into seven machine types: fan, gearbox, bearing, slide rail, toy car,
toy train, and valve. We used the training setup described in Table-1
to train one model for each machine type and evaluated them on the
provided evaluation data set, which includes labeled anomalous and
normal audio samples.

We convert each audio sample into a 64 x 64 log mel-
spectrogram. We then randomly mask 48 out of 64 patches of size
8x8 in the spectrogram and use it as the input to the U-Net model.
The model tries to reconstruct the masked areas of the original spec-
trogram by minimizing the mean squared error (MSE) loss. At each
epoch, we used fresh, randomly generated masks.

Table 1: Training Setup

Parameter Value

Learning rate 0.0001
Optimizer Adam
Epochs 100
Batch size 64

2.2. Evaluation

To test the model, we use the same masking procedure as in train-
ing and give the masked spectrogram as input to the model. We
then average the output spectrograms over 256 inference steps to
obtain a more stable reconstruction. We compute the MSE between
the masked areas of the reconstructed spectrogram and the masked
areas of the original spectrogram. The MSE acts as our anomaly
score, as a high MSE is hypothesized to indicate an increased like-
lihood of a sample being anomalous. The challenge uses area under
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the curve (AUC) and partial area under the curve (pAUC) as evalua-
tion metrics to measure how well the model can distinguish between
normal and anomalous sounds. The pAUC focuses on a specific
range of low false-positive rates (FPR) from 0 to a given threshold
value p (0.1 in our case). The pAUC is introduced to address prac-
tical concerns, as a reliable ASD system should have a high true-
positive rate while keeping the FPR low. This ensures that the sys-
tem effectively detects anomalies without generating frequent false
alarms. For more detailed descriptions of AUC and pAUC we refer
to [1]

3. DATASET

3.1. Raw Data

We use the development data set provided by the DCASE challenge
organizers. It consists of seven different machine types: Fan, Gear-
box, Bearing, Slide rail, Toy car, Toy train, and Valve. The data set
is split into training data consisting of 990 normal clips from the
source domain and 10 normal clips from the target domain for each
machine. The source and target domain differ in operating speed,
machine load, viscosity, heating temperature, type of environmen-
tal noise, signal-to-noise ratio, etc. The test data for each machine
consists of 50 normal clips and 50 anomalous clips. Each clip has a
duration varying between 6 to 18 seconds.

3.2. Preprocessing

Before training, we transform each audio sample to a log mel-
spectrogram with a shape of (64,64). Log mel-spectrograms are
preferred over log spectrograms because they balance the signal
strength across different frequency ranges. Log spectrograms, on
the other hand, have weak signals in the mid to low frequencies and
only strong signals in the very high frequencies. We suspect that
differences in the low to mid-level frequencies between normal and
anomalous samples are higher when using the Mel scale, making
it more difficult for the model to reconstruct anomalous samples
after only being trained on normal samples and thus leading to an
improved anomaly score.

The parameters used to calculate the spectrograms are given in
Table-2. They are chosen such that the spectrograms of the audio
samples have a shape of (64, 64),

Table 2: Preprocessing Parameters

Parameter Value

Hop Length 256
Window length 124
FFT lenght 400
Mel bins 80
Spectrogram Shape 64 x 64
Patch size 8 x 8
Patches masked 48

4. MODEL ARCHITECTURE

We use a U-Net architecture for our model. The U-Net architecture
is a convolutional neural network (CNN) that was originally de-
signed for biomedical image segmentation. It has since been used in

Figure 1: U-Net Model architecture for our submission

many other applications, including audio processing. In particular,
Yamashita et al. [3] used the U-Net architecture in their submission
for DCASE 2022 Task 2 and we decided to take a similar approach.

Our implementation of the U-Net architecture consists of an
input layer followed by four down-sampling blocks and four up-
sampling blocks, as described in 1. Each down-sampling block
consists of two convolutional layers with batch normalization and
ReLU activation functions, followed by max pooling. This results in
a compressed latent space size of (4,4) with 512 channels, as shown
in Table-3. Each up-sampling block consists of an up-sampling
layer with scale factor 2, followed by two convolutional layers with
batch normalization and ReLU activation functions. The output
layer consists of two 2D convolutional layers with Leaky ReLU ac-
tivation functions. For all convolutional layers, we use a kernel size
of 3 and padding of 1.

Table 3: A U-Net architecture
Input Module Kernel size N Output

(1,64,64) ConvIn 3 2 (64,64,64)
(64,64,64) DownBlock 3 4 (512,4,4)
(512,4,4) UpBlock 3 4 (64,64,64)
(64,64,64) ConvOut 3 2 (1,64,64)
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5. RESULTS

Table 4: Performance Metrics Comparison: Baseline vs. U-net

Machine Baseline U-net

AUC pAUC AUC pAUC

Slider 70.31% 56.37% 52.08% 51.57%
ToyCar 70.1% 52.47% 46.18% 48.91%
Gearbox 60.31% 53.22% 43.10% 49.76%
Valve 55.35% 51.18% 64.38% 58.85%
ToyTrain 57.93% 48.57% 49.33% 49.53%
Bearing 65.92% 50.42% 40.02% 49.34%
Fan 80.19% 59.04% 48.18% 58.11%

Table-4 shows a comparison based on the U-net approach with the
parameters from tables 1, 2, 3 and an auto-encoder baseline from
the challenge organizers [1]. Our results suggest that for all experi-
mental setups, the reconstruction loss of the U-net architecture does
not provide a reliable estimation for a given machine’s normality
(or anomaly, respectively). Our method beats the baseline only on
one model (valve) for both AUC and pAUC.

6. FURTHER EXPERIMENTS

We conducted various experiments with varying hyperparameters
and reconstruction schemes to investigate the reasons for our poor
results.

• Learning Rate: Gradual steps between 1e-2 to 1e-5
• Training Batch Sizes: Ranging from 32 to 256
• Epochs: 10 to 300
• Number of Masked Patches: Varying from masking only a

few patches to masking almost all patches
• Patch Sizes: Sizes ranging from 2 to 16
• Frequency Scaling of Spectrogram Generation: Log and

log-mel
• Reconstruction Mode:

a) Reconstructing the full spectrogram
b) Reconstructing only the masked spectrogram areas

Varying the learning rate, batch size, number of masked
patches, or patch size does not yield reliable improvement but the
suggestion from our supervisor to use reconstruction approach b)
instead of a) lead to a small but consistent improvement, as the fol-
lowing table shows. Here, all other parameters are kept the same,
as reported in tables 1, 2, 3.

Table 5: Performance Metrics Comparison: a) vs. b)

Machine a) Reconst. full b) Reconst. masked

AUC pAUC AUC pAUC

Slider 50.38% 51.25% 52.08% 51.57%
ToyCar 45.21% 49.12% 46.18% 48.91%
Gearbox 42.54% 49.49% 43.10% 49.76%
Valve 62.55% 57.26% 64.38% 58.85%
ToyTrain 48.46% 49.81% 49.33% 49.53%
Bearing 39.45% 49.29% 40.02% 49.34%
Fan 51.44% 59.12% 52.18% 58.11%

7. CONCLUSION

The task of Anomalous Sound Detection for DCASE 2023, em-
ploying the U-Net architecture, was challenging. Our method based
on the U-net architecture surpassed the baseline only for the valve
machine type. Considering the goal of domain generalization, i.e.,
training a model for a completely new machine with only normal
sounds available, these results are particularly concerning. For
some machines, e.g., for fan, the model even turns out significantly
worse than average. As our method yields sub-average AUC scores
for 5/7 machine types, we assume that the difficulty of reconstruct-
ing normal vs. reconstructing anomalous sounds using our U-net re-
construction approach varies greatly from machine type to machine
type. Therefore our method can not be recommended for training a
model on a completely new machine but may be useful solely for
potentially detecting malfunctioning valves. Although a lot of ef-
fort was made to uncover potential reasons for these unsatisfactory
results, we can not present definite answers. Despite the challeng-
ing nature of the task and many revisions of the experimental setup,
we have to seriously consider potential mistakes in our preprocess-
ing, training, or evaluation setup as a potential explanation. Overall,
working on this project was still a great opportunity to learn about
the challenges of dealing with unsupervised learning and to handle
setbacks during projects.
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