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ABSTRACT

This report presents our work for DCASE 2023 Task 2: first-
shot unsupervised anomalous sound detection for machine condi-
tion monitoring. This task mainly focuses on first-shot problems
compared with previous challenges. No hyperparameter tuning and
developing systems on some machines while testing on other ma-
chines bring a lot of challenges. We have developed several kinds of
systems to detect first-shot sound anomalies better: training embed-
ding extraction systems from scratch, finetuning pre-trained embed-
ding extractors, and employing normalizing flows. Different kinds
of systems give complementary information. We achieve the best
hmean of 69.46% on the development set through system fusion.

Index Terms— Anomaly detection, sound, embedding extrac-
tion, normalizing flows

1. INTRODUCTION

Recent years saw a dramatic improvement in Artificial Intelligence
(AI) technologies and the accelerating Internet of Things (IoT) de-
ployment. The concept of the Artificial Internet of Things (AIoT), a
combination of AI and IoT, has become a heated research topic. The
ubiquitous sensors and devices form hierarchical networks, gener-
ating numerous data continuously on which powerful AI technolo-
gies can be deployed. This scheme can realize more and more ap-
plications. Industrial manufacturing is one of the most probable
fields that benefit from AIoT since numerous sensors can be de-
ployed in the production site, continuously monitoring the work-
ing status, while anomaly detection techniques can be leveraged to
identify potential machine failures, leading to a great improvement
in efficiency and safety. However, challenges remain for anomaly
detection in industrial scenarios, especially audio-based anomaly
detection. We believe the main challenges can be summarized as
follows:

1. Lack of anomalous samples for training. Anomalies are rare
to happen, and limited anomalies are utilized as validation.
Anomaly detectors must be trained without anomalous sam-
ples, and models must be either unsupervised or trained by a
proxy task. This lack of direct supervision brings huge chal-
lenges for anomaly detection.

2. The noise mixed with the machine audio. Recorded audio
of a specific machine is often mixed with various kinds of

background noise: the sound of other machines, the sound of
human activities, etc. The background noise is also variable
over time and likely identified as an anomaly.

3. Domain shift caused by the variational working condi-
tions. Working conditions continuously change, and differ-
ent working conditions correspond to different patterns, re-
quiring the model to be generalized in all scenarios. To fea-
ture this issue, domain shift is introduced in the challenge
[1, 2, 3], where most normal clips for training are from the
source domain.

In this paper, we describe the THUEE system for first-shot un-
supervised anomalous sound detection for machine condition mon-
itoring. Multiple classification models and a probabilistic model
are developed for the challenge, and all four submitted systems are
combinations of these models. We will introduce these models in-
dividually, then present the composition of four ensemble systems.

2. MOBILEFACENET-BASED CLASSIFIER

In this subsection, we provide a classification model, Mo-
bileAnoNet(MAN), a network trained by supervised classifica-
tion. MAN combines a front-end feature extractor implemented
by a modified MobileFaceNet(MFN) [4] and a back-end KNN [5]
anomaly detector.

MobileAnoNet is supervised by both the machine type and
working condition labels simultaneously. Multiple parallel classifi-
cation heads corresponding to machine type and working condition
labels are employed to train the feature extractor. Each classifi-
cation head consists of an independent full-connection layer and a
Cross-Entropy loss. The overall loss function is defined as Eq.(1),
where Lmachine and Lcondition are the loss given by the machine
type label and the working condition labels.

L = Lmachine + Lcondition (1)

Lmachine is implemented by Center Loss [6], formulated as
Eq.(2), where the first term is the cross entropy loss between each
predicted machine type WT

mxi and the ground truth ym
i . WT

m is
the weight of the classification head. The second term is the Mean
Square Loss (MSE) between each embedding xi and the center of
the corresponding class cym

i
, where λ is a hyper-parameter to bal-

ance two terms.
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Machine AUCs AUCt pAUC hmean

bearing 65.6 53.1 52.9 56.6
fan 86.2 61.6 63.7 68.9

gearbox 87.0 79.3 70.3 78.3
slider 97.1 96.3 85.8 92.8

ToyCar 67.3 40.0 49.1 49.8
ToyTrain 52.5 42.3 48.8 47.5

valve 76.2 66.5 51.8 63.2

all hmean 73.2 57.5 58.0 62.1

Table 1: Performance of MobileAnoNet(MAN)

Lmachine = Ls + λLc

=
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Lcondition is the sum of the cross entropy loss of working con-
ditions, which is formulated as Eq.(3). ki is the number of working
condition labels xi possesses, cj is the j th working conditions of xi

and WT
cjxi is the predicted working condition of cj .

Lcondition =
1

n

n∑
i=1

ki∑
j=1

CE(WT
cjxi, y

cj
i ) (3)

The Short-Time Fourier Transform(STFT) spectrogram is se-
lected as the input feature. An embedding vector is calculated for
each audio clip by averaging the embedding vector of every frame
by the trained feature extractor. A KNN model is trained by all the
embedding vectors from the train set.

We train our MAN on all the training data from the development
and Additional training dataset. The performance(AUCs, AUCt,
pAUC) is shown in Table 1.

3. NF-CDEE

In this subsection, we provide a detailed description of our proba-
bilistic model: WSP-NFCDEE. WSP-NFCDEE is an extension of
the NFCDEE model [7], incorporating a Weighted Statistic Pool-
ing (WSP) layer before the normalizing flows. This modification
significantly enhances performance across various machine types,
particularly on the slider. Consequently, we refer to this modified
approach as WSP-NFCDEE.

Let x∈RM×T denote the mel-spectrogram, where M represents
the number of Mel bins, and T denotes the number of frames. The
WSP module computes the mean vector y∈RM and the standard
deviation vector z∈RM of X along the time axis. The output of the
WSP module is obtained by combining α·y and β·z, where α and
β are two trainable parameters that conform to the constraints:

α+ β = 1, α, β > 0 (4)

This integration of the WSP layer preceding the normalizing
flows improves the overall performance, making WSP-NFCDEE a
powerful choice for a wide range of machine types, with particular
emphasis on the slider.

The log mel-spectrogram is selected as the input feature for
both WSP-NFCDEE and IMDN models. Specifically, the input fea-
ture is obtained through the Short-Time Fourier Transform (STFT)

Machine AUCs AUCt pAUC hmean

bearing 67.66 64.64 51.84 60.56
fan 92.40 84.00 76.32 83.73

gearbox 77.74 75.02 57.68 68.92
slider 91.00 85.54 66.37 79.48

ToyCar 72.36 44.44 50.37 53.40
ToyTrain 52.38 47.16 48.32 49.19

valve 69.20 66.60 53.58 62.33

hmean 72.30 63.00 56.45 63.26

Table 2: Performance of WSP-NFCDEE

with Mel scaling, which effectively captures the non-linear fre-
quency characteristics of the audio signal.

While WSP-NFCDEE performs well on a single type of ma-
chine due to limited data, the system trained on a single machine
may not have sufficient generalization ability on new data. There-
fore, the machines are partitioned into four groups based on their
signal features:

1. Stationary: bansaw, shaker, bearing, fan, ToyCar

2. Non-stationary: ToyDrone, ToyNscale, ToyTank, ToyTrain,
Vacuum

3. Periodic: gearbox, slider

4. Aperiodic with impulse: grinder, valve

Four different WSP-NFCDEE models are trained on each group
to enhance the generalization ability of the trained models. The
performance on the development set is presented in Table 2. Results
from the grouping method outperform the performance of training
all machines together. In particular, for certain machine types, such
as fans, the performance improvement of the grouping method over
a single machine is significant.

4. PRE-TRAINED AUDIO MODELS

As known, Pre-trained Language Models (PLMs) have demon-
strated powerful capability and great potential. We also investigate
the use of pre-trained audio models in this year’s challenge.

4.1. Pre-trained Models

Four types of pre-trained models are employed in the scheme:
Wav2Vec 2.0 [8], HuBERT [9], Unispeech [10], and WavLM [11],
most of which are pre-trained on speech datasets. Wav2Vec 2.0
improves Wav2Vec [12] by employing a transformer encoder as
the context network. HuBERT adopts the architecture of Wav2Vec
2.0 while utilizing the masked language modeling task proposed
in BERT [13], as well as introducing a novel clustering algorithm
to process the mel-spectrogram. Unispeech incorporates multi-
task learning and improves the performance in multi-lingual speech
recognition and domain transfer tasks in audio. WavLM combines
HuBERT with multiple kinds of data augmentation, effectively pro-
moting the general performance on multiple speech-related down-
stream tasks. All models are implemented by PyTorch [14] and
HuggingFace. We use the XLS-R 300M version for Wav2Vec,
HuBERT-large, Unispeech-large, and WavLM-large, each of which
contains approximately 300M parameters.
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Table 3: Performance of Pre-trained Models

Wav2Vec HuBERT Unispeech WavLM

mean-min tf-none tf-min mean-min tf-none tf-min mean-min tf-none tf-min mean-min tf-none tf-min

bearing 62.62 62.52 64.02 71.29 66.89 71.19 74.74 73.62 74.90 71.70 65.50 71.14
fan 66.66 60.53 64.77 59.45 61.41 62.29 56.92 49.71 57.39 55.70 48.25 55.87

gearbox 77.77 68.9 71.31 67.61 65.22 69.70 73.49 70.59 69.67 74.65 77.14 75.89
slider 83.96 87.63 83.92 80.82 78.63 77.99 80.87 84.22 85.02 82.88 80.38 86.42

ToyCar 58.92 59.90 60.01 56.09 62.00 59.52 57.26 56.46 57.36 55.20 57.86 57.53
ToyTrain 55.92 56.94 56.53 54.79 53.80 53.02 54.40 56.17 56.96 61.43 55.36 58.75

valve 68.61 59.57 67.08 61.33 56.15 58.71 67.64 60.16 65.93 66.07 50.94 58.19

hmean 66.56 63.94 65.88 63.41 62.61 63.66 65.08 62.57 65.39 65.49 60.15 64.64
The harmonic mean of AUCs, AUCt, and pAUC of each machine type is presented in this table, where mean and tf denote the mean pooling
and the transformer aggregation, respectively, and none and min denote the regular detection and the detection with soft scoring.

Table 4: Performance of Ensemble Models

Ensemble-1 Ensemble-2 Ensemble-3 Ensemble-4

AUCs AUCt pAUC hmean AUCs AUCt pAUC hmean AUCs AUCt pAUC hmean AUCs AUCt pAUC hmean

bearing 67.66 64.64 51.84 60.56 78.80 65.04 56.00 65.33 81.00 69.42 56.53 67.50 78.70 67.86 54.74 65.63
fan 92.40 84.00 76.32 83.73 98.24 64.32 65.37 73.13 94.94 78.98 62.89 76.74 98.64 77.58 63.58 77.41

gearbox 77.74 75.02 57.68 68.92 85.16 83.58 68.16 78.17 86.88 85.70 68.79 79.54 90.60 88.68 73.89 83.69
slider 91.00 85.54 66.37 79.48 99.90 93.62 84.21 92.12 99.52 94.14 83.74 91.99 99.34 93.22 81.68 90.81

ToyCar 72.36 44.44 50.37 53.40 66.52 56.72 49.53 56.76 63.14 63.34 48.63 57.48 62.14 59.24 48.42 55.94
ToyTrain 52.38 47.16 48.32 49.19 69.84 51.20 49.53 55.51 67.72 57.60 48.53 56.89 63.96 60.38 50.58 57.73

valve 69.20 66.60 53.58 62.33 79.28 62.70 52.74 63.13 75.98 69.92 54.47 65.47 78.96 78.16 55.79 69.15

hmean 72.30 63.00 56.45 63.26 80.84 65.62 58.80 67.24 79.36 72.31 58.53 68.94 79.24 73.02 59.26 69.46

All pre-trained models are fine-tuned with all the parameters
on the development dataset and the additional training dataset, by
classifying the attribute information. Each unique combination of
the provided attributes is considered a unique category, resulting in
167 classes for the datasets. The input for each model is 2s segments
randomly sliced from the 10s clip, and it is processed by the pre-
trained models. Since the output shape of these models is too big for
anomaly detection, statistical pooling modules are attached to the
output of these models, which maps the output to a fixed size of 128.
Additional linear classification heads then map the 128-dimension
embedding to the logits. All models are trained by ArcFace [15].
We adopt AdamW as the optimizer with a learning rate of 5e-4.
Models are trained for 10k steps and validated periodically. The
best-performing models are saved for inference.

4.2. Anomaly Detection

After fine-tuning the models, we extract the 128-dimension embed-
ding as the feature representation and conduct anomaly detection
on these embeddings. However, since each 10s clip corresponds to
multiple 2s segments, we investigate how to aggregate the segment
embedding series into a clip embedding. For efficient representa-
tion learning of audios, we feed 2-second segments into pre-trained
models and obtain at least five different embeddings with different
window shifts for 10-second audio input. Then a pooling method
is applied over different embeddings of a clip of audio. We inves-
tigate average pooling and adopt a 1-layer transformer to aggregate
the features. Both methods yield a 128-dimension embedding as the
clip embedding.

Anomaly detection is conducted on the 128-dimension clip em-

bedding. We adopt KNN as the anomaly detector since it is much
more robust across all machines than other detectors. The distance
metric is chosen as cosine distance, and the number of neighbors
k is selected as 2. KNN is trained on all the embeddings of the
training set. However, the soft scoring algorithm introduced in the
baseline systems [16] is also investigated for KNN, in which we
train two KNN detectors by all the source embeddings and all the
target embeddings, respectively. A query embedding is processed
by two detectors, and the minimum score is selected as the anomaly
score.

The performance of each single model is presented in Table 3.

5. ENSEMBLE

We ensemble all the proposed models by score-level. The per-
formance of all four ensemble models is presented in Table
4. Ensemble-1 comprises MobileAnoNet and WSP-NFCDEE.
Ensemble-2 comprises MobileAnoNet, WSP-NFCDEE, and all
pre-trained models of transformer aggregation. Ensemble-3 com-
prises MobileAnoNet, WSP-NFCDEE, and all pre-trained models
of transformer aggregation and soft scoring. Ensemble-4 com-
prises MobileAnoNet, WSP-NFCDEE, and all pre-trained models
of mean pooling and soft scoring.
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