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ABSTRACT

Few-shot sound event detection has always faced the challenge of
detecting bioacousic sound events with only a few labelled instances
of the class of interest. In this technical report, We describe our sub-
mission system for DCASE2023 Task5: few-shot bioacoustic event
detection. We propose a novel framework of training audio seg-
ments via contrastive learning and prototypical learning, building
the network more robust to the variety of acoustic environments,
even in unseen domains. In addition, a finetuning strategy based on
the novel loss functions is introduced. Our final systems achieves
an f-measure of 83.08 on the DCASE task 5 validation set, outper-
forming the baseline performance and last year’s first place by a
large margin.

Index Terms— Few-shot Learning, Contrastive Learning, fine-
tuning, bioacoustic sound Event Detection

1. INTRODUCTION

Sound event detection is the task of recognizing the sound events
and their respective temporal start and end times in a recording [1].
In the case of bioacoustic sound event detection, the task focuses
on animal vocalizations, which demand time and resources to an-
notate each time stamp [2]. All of these tasks meet the problem
of data scarcity and difficulty in creating a robust model that can
show general performance in acoustic domain. Accordingly, meth-
ods based on few-shot learning have come into the limelight. Few-
shot learning (FSL) is a supervised learning method that can achieve
high performance on data from completely different domains even
with a small amount of data. In the previous DCASE 2022 task 5
challenge, submitted systems achieved great performance by trans-
ductive inference method [3, 4, 5], improved prototypical learning
[6], contrastive learning [7], and multi-class classification learning
via splitting the audio segment into frame-level [8]. Nevertheless,
proposed methods showed relatively low performance on the eval-
uation dataset compared to the performance obtained on the valida-
tion set.

The majority of existing methods adopted prototypical learning
to identify positive class from negative classes. Although prototyp-
ical learning itself demonstrated high performance, there were two
limitations on taking the performance to another level. Firstly, the
capability of high-level feature learning was challenging since the
model was training on classifying binary classes, which are positive
class and negative class. There has been an attempt to overcome this
limitation by including additional multi-classification task along
with existing few shot learning [8]. Second, the loss function of
current prototypical learning [9] focuses on pulling positive classes,
which we refer as “positive-based prototypical loss function (PPL)”.
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Figure 1: Our overall framework.

It may be promising on the training dataset which contains sufficient
amount of positive class data, but it can lead to overfitting when the
amount of negative class data is far much grater than that of positive
class. If the model is trained on the standard prototypical learning
manner, embedding features of negative classes are highly likely to
be dispersed while that of positive classes are well-clustered in the
embedding space. Since the class imbalance problem is pretty com-
mon in bioacoustic domain, we propose fine-tuning strategy with
negative-based prototypical loss function (NPL) to ameliorate this
issue. The proposed method suggests additional training on nega-
tive class data to enhance the ability to aggregate negative classes in
the embedding space. By applying proposed strategy, the pretrained
model can attain superior capability to discriminate positive classes
and negative classes. Through this strategy, pretrained model can
achieve higher F-measure on the validation dataset.

The rest of our paper is organized as follows. In the section
2, we describe our baseline framework and its novelties into spe-
cific details. In section 3, we outline the dataset and experimental
setup for comparison not only with baseline methods, but also other
variants of our own baseline framework. Experiment results are
discussed in section 4, and we summarize our methods and argue
future works in the section 5.

2. METHODS

Our 2-stage framework consists of pretraining stage and finetuning
stage. Our overall framework can be shown in Fig. 1. Our frame-
work achieves the best F-measure score 64.31% on the pretraining
stage, and it can further be improved to F-measure score 83.08%
after fine-tuning stage.
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2.1. Outline

We utilize our system in N -way K-shot task. Prior to previous
methods [3, 4, 5, 6, 7, 8], we denote positive segment as the target
sound event and negative segment as the audio segments that do not
contain the target sound event in each audio file. Given the fact that
training dataset contains 45 classes and task 5 is regarded as 5-shot
learning problem, we set N = 45 and K = 5. Following the rule
that each audio file in the validation dataset should be considered
independently, we define negative segments as negative classes. In-
stead of grouping negative segments into a single ‘unknown’ class,
we define negative segments from a single audio file as solitary neg-
ative classes. In other words, each audio file contains a single pos-
itive class and single negative class. Alas, our system has 45 neg-
ative classes along with 45 positive classes. This enables encoder
network fθ(·) to cluster positive segment more densely, maximizing
the gap between positive segment and negative segments.

2.2. Pretraining Stage

In the pretraining stage, we train the encoder network fθ(·) by com-
bining the advantages of prototypical learning and contrastive learn-
ing. We select each 2 × K positive segments and negative seg-
ments from the dataset, and set K segments as support segments
and the other as query segments. We denote the positive support set
of class i as Sp

i and the query set as Qp
i , and the negative support

set and the query set of class i can be expressed as Sn
i , Qn

i where
|S| = |Q| = K. Since the prototype of each set is the mean em-
bedding vectors, we can define the prototype of each set in class i
as the equation below.

s∗i =
1

|S∗
i |

∑
(xi,yi)∈S∗

i

fθ(xi), q
∗
i =

1

|Q∗
i |

∑
(xi,yi)∈Q∗

i

fθ(xi) (1)

where (xi, yi) are the segment and its label of the class i in each set.
Equation 2 describes PP i

j , which defines the euclidean distance be-
tween positive embedding vectors of Qp

i and positive support pro-
totype of class j, spj .

PP i
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(fθ(x)− spj )
2

 (2)

In the same way, we can denote PN i
j , which is the euclidean dis-

tance between embedding vectors of Qp
i and negative support pro-

totype snj .
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Then we can formulate positive-based loss for class i as the
equation below.

ppli = −log

(
exp

(
−PP i
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j
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+ exp
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−PN i
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Using equation 4, PPL can be formulated as the equation 5.

PPL =
1

N

N∑
i=1

ppli (5)
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Figure 2: Let zpi = fθ(x
p
i ) be the positive embedding vector in

the query set of class i, and zni = fθ(x
n
i ) as the negative embed-

ding vector in the following set. (a) depicts PPL function, which
seeks to minimize PP i

∗. (b) describes the NPL function, minimize
NN∗ while maximize NP i

∗. Given that the encoder network al-
ready possesses the capability to cluster positive classes, we utilize
NPL during the fine-tuning stage to increase the distance between
sn∗ and sp∗. The red line infers pull force, and the blue dotted line
refers to push force.

To enlarge the feature representation learning We pretrain fθ(·)
with PPL function and supervised contrastive loss function To en-
hance the feature representation cpapcity of fθ(·), we add super-
vised contrastive (SupCon) loss function [10]. We build 2-layer
projection layer gθ(·) for creating embedding vectors for each au-
dio segments in the following step. Thus, our total loss function for
pretraining step can be formulated as Ltrain = LPPL +LSupCon.
We adopt convolutional neural network (CNN) from previous years’
method [3] as our encoder network fθ(·). We set output embedding
dimension to 2048 for LPPL, and downsize the dimension to 512
for LSupCon. Through the pretraining stage, the encoder network
fθ(·) can attain the ability to embed positive classes well in the em-
bedding space. In other words, the encoder network are taught in a
way to focus on postiive-based feature learning during the pretrain-
ing stage.

2.3. Finetuning Stage

After first stage, fθ(·) is capable of detecting positive segment from
negative segment. However, the dataset is comprised of a large
number of negative segments and a very small amount of positive
segments in the boiacoustic domain. This fact may not guarantee
the sufficient performance of fθ(·) on the general bioacoustic do-
main. In order to resolve data scarcity and performance mainte-
nance issues, we figured that a sole training stage was not enough.
Based on the unique characteristic of bioacoustic dataset, we fine-
tune fθ(·) to aim on negative-based feature learning, which is op-
posite of the aforementioned stage. We display comparison of PPL
and NPL in Fig. 2. Furthermore, We also propose a further de-
veloped Distance-based NPL fucntion by incorporating the idea of
Farthest Point Sampling (FPS) algorithm into the NPL function pro-
posed in this technical report.
Negative-based Prototypical Loss In this stage, we add additional
definition of distances between embedding vectors of Qn

∗ and sup-
port prototypes. Following the equations 2 and 3, we can define NP
and NN as euclidean distance of negative query embedding vectors
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between positive support prototype and negative support prototype.
Equation 6 and 7 describes NP and NN in more specific manner.
we can formulate NPL with equations 8 and 9.

NP i
j =

√∑
x∈Qn

i

(fθ(x)− spj )
2

 (6)

NN i
j =

√∑
x∈Qn

i

(fθ(x)− spj )
2

 (7)

Unlike the PPL, NPL minimize the distance between nega-
tive embedding vectors and sn while maximizing the distance be-
tween the positive embedding vectors. Therefore, we redesign the
positive-based loss ppli as the equation 8.
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And we add new negative-based loss npli to minimize the gap
between negative embedding vectors and sn. The following dis-
tance function are described as below.

nnli = −log

(
exp
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−NN i

i
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j=1
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j
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+ exp

(
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To sum up, NPL function can be summarized as equation 10.

NPL =
1

N

N∑
i=1

(pnli + nnli) (10)

By finetuning fθ(·) with LNPL, fθ(·) learns the ability to cluster
negative embedding vectors and negative prototype more densely
and gives the effect of separating positive segments in result.
Distance-based Negative-based Prototypical Loss While NPL
loss function randomly pick K support features and K query fea-
tures from 2 ×K arbitrarily chosen features, we enlarge NPL loss
function by adopting the idea of Farthest Point Sampling (FPS) al-
gorithm. FPS algorithm is classic method used in 3D point clouds
[11]. Since we aims to clump negative embedding vectors and neg-
ative prototype, we believe distance-based selection of query and
support features can maximize the efficacy of NPL loss function.
All distances between 2 × K randomly extracted positive features
and 2 ×K negative features are calculated. Then, the positive and
negative features with the shortest distance are selected as a pair
of reference features. Nearest sampling is attempted based on the
selected positive reference feature and negative reference feature.
Thus, we set negative features placed close to the positive features
as a negative support set, and positive features closely located to
the negative features as a positive query set. Then, we optimize the
loss function to maximize the distance between negative prototype
and positive query set so that we can ultimately maximize PN . In
opposite manner, we conduct furthest sampling based on the prior
negative reference feature in negative features. By this process, neg-
ative features located on the outskirts will be selected from among
negative features, and non-selected features will be located on the
inner side among negative features. We set the selected features to a
negative query set and the unselected features to a negative support
set. The negative prototype created from negative support set are

used to minimize the distance between negative query set, eventu-
ally minimizing NN . In this way, we can boost the initial goal of
NPL by optimizing the maximization of positive-negative distance
and minimization of negative-to-negative distance at the same time.
The following procedures are specifically illustrated in the Figure
3.

Figure 3: We denote each positive reference feature negative ref-
erence feature as Refp and Refn. The triangle, circle, and star-
shaped figure each represent the feature vectors of support set, the
query set, and the prototype respectively. (a) shows the process of
maximizing PN by obtaining a positive query set and a negative
support set close to each Ref∗ through nearest sampling. (b) is the
process of minimizing the NN between the negative support set and
the query set through furthest sampling.

2.4. Post-processing & Inference

For post-processing and inference, We applied methods proposed
on previous year’s challenge [3].

3. EXPERIMENT

3.1. Experimental setup

In DCASE 2022 challenge, most of the methods were developed
based on the transductive inference (TI) method [12, 13, 14], which
played a crucial role on winning the DCASE 2021 challenge [15].
Based on this experience, we applied part of the TI method as a vari-
ant to our system. We conducted the experiments for two reasons.
First, we want to prove that our novel framework is more applicable
in the few shot learning domain than baseline methods. Further, we
compare variants with our baseline as ablation study to analyze the
impact of TI methods and our novel finetuning strategies. Second,
We intend to prove the efficacy of our proposed method by compar-
ing the results of grafting the finetuning strategy onto the existing
baseline method. In all experiments, the learning rate was set to
0.001 and the input length was fixed in 0.2 seconds.
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PB ME HB Overall
Stage System Pre (%) Rec (%) F-measure (%) Pre (%) Rec (%) F-measure (%) Pre (%) Rec (%) F-measure (%) Pre (%) Rec (%) F-measure (%)

Pretrain

Jung S0 52.91 39.57 45.27 66.67 84.62 74.58 88.61 74.02 80.66 66.39 59.28 62.64
Jung S1 61.54 38.26 47.18 84.91 86.54 85.71 80.86 65.71 72.50 74.27 56.70 64.31
Jung S2 52.91 39.57 45.27 66.67 84.62 74.58 88.61 74.02 80.66 66.39 59.28 62.64
Jung S3 61.54 38.26 47.18 84.91 86.54 85.71 80.86 65.71 72.50 74.27 56.70 64.31

Finetune

Jung S0 77.30 47.39 58.76 96.30 100.00 98.11 96.79 95.77 96.28 89.15 72.22 79.79
Jung S1 79.47 52.17 62.99 91.23 100.00 95.41 96.80 95.92 96.36 88.56 75.77 81.67
Jung S2 84.06 50.43 63.04 91.22 100.00 95.41 96.04 95.17 95.60 90.17 74.38 81.52
Jung S3 76.22 54.35 63.45 98.11 100.00 99.05 99.53 95.62 97.53 89.93 77.20 83.08

Table 1: The precision, recall, and f-measure of each subset in the validation set. S0, S1,S2,S3 are four systems we submitted to the challenge.

To prevent overfitting on any dataset, we implemented early stop-
ping. We did not use any augmentation or additional acoustic fea-
tures. We adopted the official evaluation metric1 as our evaluation
metric.

3.2. Dataset

The DCASE 2023 task 5 dataset contains a training set, a validation
set, and an official evaluation set. Since the full annotation of eval-
uation set was not released in public, we considered the validation
set of the DCASE 2023 task 5 dataset as the evaluation set.

4. RESULTS

4.1. Performance Comparison

In Table 1, we compare our submitted systems. We submit 4 sys-
tems in the challenge. We select systems with different conditions
as mentioned in Section 3.1 to avoid cherry-picking models that
might overfit on the validation set. All four systems use the same
configurations shown in Table 2, and the performance is specified
in Table 1. When it comes to specifically comparing the perfor-
mance between sub-folders, our system showed relatively low per-
formance on PB dataset relative to other dataset in sub-folders. We
assume this phenomenon is due to the drastic ratio between positive
segment and negative segment. Unlike other datasets, PB dataset
contains relatively short duration of positive segment. This fact as-
sures PB dataset is comprised of highly imbalanced ratio of pos-
itive segments to negative segments. Since the features extracted
from positive segments are limited, the encoder network fθ(·) finds
it more difficult to detect positive semgents.

Precision (%) Recall (%) F-measure (%)
Template Matching 2.42 18.32 4.28

Prototypical Network 36.34 24.96 29.59
[8] 77.50 71.50 74.40

Ours Pretraining 74.27 56.70 64.31
Finetuning 89.93 77.20 83.08

Table 2: The precision, recall, and measure of validation set.

In the Table 2, we compare our methods with baseline methods
and the winning team of DCASE 2022 [8]. The baseline methods
are template matching and prototypical network [16]. Pretraining
denotes the performance of the encoder fθ(·) after the pretraining
stage, and Finetuning denotes the performance after the finetuning
stage. As can be seen in Table 2, our proposed method outnumber
both baseline methods and 2022 challenge winning team by large

1https://github.com/c4dm/dcase-few-shot-bioacoustic

margin. We also evaluated our encoder network fθ(·) after each
stage to confirm the impact of NPL function. The disparity between
the performance of two stages clearly verify NPL function actually
have a meaningful impact on developing the capacity to detect pos-
itive sound event even in the highly imbalanced dataset.

4.2. Ablation Study

In the ablation study, we compare our baseline framework and the
combination of baseline and novel finetuning strategy. We com-
pared the case where only the basic training stage was performed
for each baseline and the case where two different finetuning strate-
gies were applied.

Train set w. validation set
Pretraining stage 62.64 64.31

w. NPL finetuning 79.79 81.52
w. Distance-based NPL finetuning 81.67 83.08

Table 3: Ablation study of the proposed method.

In the case of the dataset used for training, it was divided into a case
where only the training set was used and a case where the valida-
tion set was used audio file-wise based on the TI method. As the
Table 3 shows, It is clear that our method excels if finetuning strat-
egy is applied. The fact that finetuning strategy with NPL function
and Distance-based NPL function show noticeable numerical dif-
ference is also noteworthy. As we do not have full annotation of
evaluation dataset, we could not compare the final F-measure score
of each system. Alternatively, we extracted t-SNE [17] from eval-
uation set. When we associate the t-SNE from each system, we
were able to confirm that the Distance-based NPL function works
effectively in embedding positive segments and negative segments
in different space.

5. DISCUSSION

In this technical report, we present novel framework for few-shot
bioacoustic event detection. Our method combine contrastive learn-
ing method and prototypical learning, and use novel finetuning
strategy of using modified prototypical loss function. While pre-
training process enable embedding positive class data on the embed-
ding space, NPL finetuning strategy enable pretrained network to
detect sound events in the environment where positive sound events
were unseen in the training stage or fine-tuning stage. Thus, We
claim that our finetuning strategy can robustly separate positive and
negative segments even in highly imbalanced datasets.
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