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ABSTRACT

Sound effects used in radio or movies, such as foley sound, have
been difficult to create without the help of experts. Furthermore,
in the field of audio synthesis, the field of speech has been actively
progressed, but there has been no research on audio sounds that can
be obtained in real life. In this technical report, We present our sub-
mission system for DCASE2023 Task7: Foley-sound synthesis. We
participate in track B, which forbids the usage of external resources.
We propose a framework that employ the loss function of Con-
traGAN and C-SupConGAN based on structure of Self-Attention
GAN (SAGAN). Our final system achieves outperforming the base-
line performance by a large margin.

Index Terms— Foley sound synthesis, Generative Adversarial
Network, Contrastive Learning

1. INTRODUCTION

Foley sound is a term used to describe sound effects that are created
to convey and enhance the sounds produced by events, especially
in a narrative such as radio or film [1]. There has been a number of
research on generating desired sounds [2, 3, 4]. However, they were
mainly focused on voice synthesis based on singing, text-to-speech
(TTS), and music generation rather than acoustic domain like sound
effects or background noises. Few researches has shown attention
to detecting background noises or sound effects in previous DCASE
challenges such as task6b, but they were limited to audio-tagging
fields or audio captioning, which describes more specific details in
text [5, 6]. In the following DCASE 2023 challenges, task 7: Fo-
ley sound synthesis were created to break new ground of the audio
synthesis in creating user-desired sound suitable for user-defined
environments [7]. The following task 7 consists of two subtask A
and B. The use of outside resources is where the two differ from
one another. In this technical report, we participated in subtask B,
which do not use any external sources.

For the DCASE 2023 challenge, we proposed two-stage sys-
tem based on Generative Adversarial Network (GAN), which is a
powerful tool for generation task in a variety of domains. The first
stage of the system aims to map a sound category input, such as
‘dog bark’, to a Mel spectrogram. Our system can be diverged into
two types in terms of processing this phase. First, the following
framework adopts adversarial loss function and conditional con-
trastive loss (2C loss) of ContraGAN [8] which applies data-to-data
and data-to-class relationship in the discriminator. Second, we use
adversarial loss function and conditional supervised contrast loss
function (C-SupCon loss), which is derived from C-SupConGAN
[9]. We use audio features extracted from pre-trained audio encoder

Figure 1: Our overall idea of optimizing data-to-data distances,
data-to-class distance and data-to-source distance. The color of
each shape represents a class. The color of line implies the push-
and-pull between the embeddings. Red line represents pulling each
embeddings while blue line represents pushing each other. The
thickness of the line expresses the strength of the pushing and
pulling force. The thicker the line, the stronger the pull or push.

network for C-SupCon loss [9]. The audio encoder was pre-trained
with supervised contrastive learning [10].

In the second stage, we use fixed vocoder network of HiFi-
GAN[11] suggested by the challenge to produce more robust results
rather than proposing novel network. This first framework shows
FAD of 5.060, and the other strategy could achieve FAD of 4.833.
These performances outperform the baseline overall FAD score.

The rest of the report is organized as follows. In the Section
2, we present C-SupConGAN, which is the key framework in our
system, and its variants in detail. Section 3 outline the experiments
for performance evaluation, and we analyze our proposed system
and its performance in the section 4. Finally, we summarize our
system and discuss future work in the section 5.

2. METHODS

We used aforementioned 2-stage system to obtain high performance
of FAD score in this task. Our overall framework is described in
Figure 2. We denote the first stage as ‘category-to-sound’ section
and the second as ‘Mel spectrogram-to-sound’ section for straight-
forward explanation. Since we suggest two distinct systems, the
differences between two systems will be discussed further along
with the loss function during the first stage.

2.1. Category-to-Mel spectrogram

In the first stage, we applied C-SupConGAN for category-to-Mel
spectrogram synthesis in the first stage of category-to-sound gen-
eration. C-SupConGAN’s main model structure is Self-Attention
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Figure 2: Our overall framework.

GAN (SAGAN), which adds C-SupCon loss, an improved form of
2C loss, to adversarial loss.
Adversarial Loss GAN is composed of generator and discrimina-
tor. Generator G intend to deceive the discriminator D with syn-
thetic Mel spectrogram generated from the given label information.
On the other hand, the discriminator D must establish the validity
of the generated Mel spectrogram and the real Mel spectrogram us-
ing label information. Thus, G takes noise zi with label information
of class i, ci, while D takes real Mel spectrogram xi or fake Mel
spectrogram G(zi, ci) based on the same label information ci. We
use the hinge loss function as the adversarial loss function, and each
objective functions for D and G are shown in the equation below.

lD = −min (0,−1 +D (xi, ci))−min (0,−1−D (G (zi, ci) , ci))
(1)

lG = −D (G (zi, ci) , ci)

Conditional Contrastive Loss (2C loss) ContraGAN, which is one
of the aspired framework of our systems, incorporated 2C loss to
stabilize GAN training. 2C loss is a supervised method that min-
imizes data-to-data distance and data-to-class distance belong to
same class and maximizes data-to-data distance belong to different
class via extracted features of data embedding from the discrimina-
tor. As shown in Figure 2, we divided the discriminator D into two
separate networks: D1 and D2. We extract real or fake data em-
bedding di from the D1(·) and the projection head h(·) while class
embedding e(ci) is extracted by embedding function e(·). Through
cosine similarity equations, these features are mapped to unit hy-
persphere.

Although we applied 2C loss, the fact that the number of classes
is small leads to the unexpected situation. We discovered that the
adversarial loss of the discriminator D falls too quickly when we
implement the 2C loss function as it is. This occurrence leads to

the poor GAN training, eventually to mode collapse problem [12]
that produces similar outputs within the class. To resolve this catas-
trophic event, we exclude label from the original 2C loss function.
Therefore, the model is optimized in a way that data-to-data dis-
tances belong to both same class and different class are maximized
while data-to-class distances of same class are minimized. This
modification induce stable training of GAN, securing the variance
of generated class-wise outputs. The following data-to-data dis-
tance d2di,j and data-to-class d2ci,i can be denoted as the equation
3.

d2di,j = exp (di · dj/τd) , d2ci,i = exp (di · e(ci)/τc) (2)

With aforementioned notation, the modified 2C loss function is
defined as follows:

l2C (di, ci) = − log

(
d2ci,i

d2ci,i +
∑N

k=1 1i ̸=k · d2di,j

)
(3)

The · symbol denotes the inner (dot) product, and N is batch
size. The hyperparameter τ is applied to control the pushing and
pulling forces; the larger τ , the weaker the force, and the smaller τ ,
the stronger the force. As C-SupConGAN differentiates the temper-
ature for data-to-data distance τd and data-to-class distance τc for
boost performance, we also set each temperature hyperparameter
differently. By default, we set τd = 0.1, τc = 1.0, which is used in
C-SupConGAN. The comparison between the training guidance of
the 2C loss function with and without label information is schemat-
ically depicted in (a) and (b) of Figure 1.
C-SupCon loss By adjusting 2C loss and adversarial loss in train-
ing GAN, ContraGAN strengthen GAN’s robustness to training col-
lapse problem. Nevertheless, ContraGAN still holds the instability
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in training process such as tackling with training collapse after cer-
tain steps, ultimately end in rapid drop in performance. To mitigate
this restraint, we extend our GAN framework to C-SupConGAN.
C-SupconGAN is distinctive in the fact that there is an additional
pretrained encoder network E(·). Through reference data embed-
dings extracted from E(·), C-SupConGAN adds a data-to-source
relation to the standard 2C loss function. This aided GAN’s feature
learning, reduced the instability of training process, enabling long-
term training, and ultimately improved the performance. Therefore,
we utilize the C-SupCon loss, an advanced version of the 2C loss,
to improve performance further. We also removed the label infor-
mation in C-SupCon loss.

d2si,i = exp (di · f(di)/τc) (4)

In the same way, the modified C-SupCon loss can be described as
follows:

lC–SupCon (di, ci) = − log

(
d2si,i + d2ci,i

d2si,i + d2ci,i +
∑N

k=1 1i ̸=k · d2di,k

)
(5)

The cases in which label information is used and excluded in the
C-SupCon loss function can be visually confirmed in (c) and (d) of
Figure 1.
For implementation of encoder network E(·), we used ResNet18
[13] as the encoder network, and it was pretrained with Supervised
Contrastive Learning (SupCon) [10] loss function. For audio aug-
mentation, we used fade in/out and time masking during pretraining
process. After pretraining process is completed, we proceed clas-
sification finetuning and classification evaluation. Since additional
dataset such as evaluation dataset was not open to public, we could
only evaluate the performance of classification on training set. The
classification accuracy achieved 100%, which may appear as over-
fitting, but we can infer that the pretrained encoder network E(·) is
capable of extracting high quality audio embeddings from the train-
ing set. Thus, we denote the relationship between mel spectrogrm
of real audio xr and extracted feature embedding vector E(xr) as
data-to-source distance of the C-SupCon loss.

Therefore, our total system is optimized through two types of
loss function, which is the combination of adversarial loss and 2C
loss function and the combination of adversarial loss and C-SupCon
loss function. 2C loss or C-SupCon loss is expressed as lC . In this
way, total loss function L can be described:

LD =
1

N

N∑
k=1

lD +
1

N

N∑
k=1

lC , LG =
1

N

N∑
k=1

lG+
1

N

N∑
k=1

lC (6)

L = LD + LG (7)

2.2. Mel spectrogram-to-sound

After the training on the first phase, Generator network G have the
ability to generate Mel spctrogram from class category. During the
second stage, pretrained vocoder network transforms the generated
Mel spectrogram into a time-domain digital audio signal. Instead of
proposing novel vocoder network, we apply the pretrained vocoder
network.

3. EXPERIMENT

We devise our experiments for two purposes. First, we conduct
experiments to show that our two proposed techniques surpass the
baseline system. Second, we design experiments to verify the im-
pact of label information on our general framework and to on abla-
tion study. We submit 4 different systems for the challenge. Since
we have two different baselines, we pin τd = 0.1 in each base-
line, then τc = 0.1 and τc = 1.0. All four systems use the same
implementation details as follows.

3.1. Experiment metrics

We use Frechet Audio Distance (FAD) [14]. FAD is a standard met-
rics for music enhancement, and very useful in that it is a reference-
free evaluation metric. FAD can be employed even in the absence
of a ground truth reference audio because it is calculated from col-
lections of hidden representations of created and real samples. The
FAD score can be computed by multivariate Gaussians between the
generated data set and the actual audio data set, which can be re-
ferred as the reference embeddings.

3.2. Implementation Details

We use the log mel-band energies of input audio as audio feature.
We set the frame length to 1024, and hop size as 256. All the models
we train are devised to generate 80× 344 mel spectrogram. By de-
fault, the learning rate for generator is 0.0001 and the learning rate
for the discriminator is 0.0001. Initially, We used the same learning
rate value applied in C-SupConGAN. However, the small amount
of dataset lead to the circumstance of discriminator D learning too
quickly. Thus, we set borth learning rates to 0.0001. For all models,
we use Adam optimizer with β1 = 0.5 and β2 = 0.999 for training.
We build 2-layer projection layer h(·) which embeds the output of
the portion of discriminator network D1 to 128-dimension. During
training, we freeze the weight of pretrained encoder network E(·).

3.3. Dataset

The DCASE 2023 task 7 development set contains 4,850 labeled
sound fragments, which can be classified into 7 categories: dog
bark, footstep, gunshot, keyboard, moving motor vehicle, rain, and
sneeze/cough. Each sound was fitted to a length of 4 seconds, and
zero-padded or segmented if necessary. All audio was transferred to
mono 16-bit 22,050 Hz sampling rate [7]. As we are participating
in subtask B, we do not use any external sources.

4. RESULTS

4.1. Ablation Study

Table 1 shows the comparison result of the existence of label in-
formation in baseline frameworks affect the performance. Table 1

w. label w/o label
2C loss 12.667 5.060

C-SupCon loss 12.552 4.833

Table 1: The comparison of FAD score on two baseline.

depict the performance when we apply the label information in the
loss function during the training process on our frameworks. From
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DogBark Footstep GunShot Keyboard MovingMotorVehicle Rain Sneeze/Cough Average FAD
Jung S0 2.899 4.149 4.821 3.411 14.929 3.848 1.449 5.072
Jung S1 2.829 3.807 3.634 4.222 15.673 3.534 1.717 5.060
Jung S2 2.559 3.414 5.985 3.468 12.591 4.219 2.390 4.947
Jung S3 2.749 3.765 4.913 2.867 14.364 3.709 1.466 4.833

Table 2: The comparison of FAD score on the submitted systems. S0, S1,S2,S3 are four systems we submitted to the challenge.

the table, we can claim that excluding label information in train-
ing process can achieve noticeable performances. We speculate this
consequences as follows. When label information exists, the model
optimizes in a way that data-to-data distance and data-to-class dis-
tance belongs to the same class is minimized while data-to-data dis-
tance belongs to different class is maximized. Unlike the task to
which C-SupConGAN or 2C loss was applied, the number of class
and the quantity of training dataset of the task7 are scarce. This
attribute leads to situation which data belongs to the same class are
densly clustered refraining the diversity of individual data within the
following class. Therefore, the loss of discriminator D drop rapidly,
eventually results poor training of GAN. This calamity leads us to
exclude label information. Under the absence of label information,
the model is trained in a way that data-to-data distance of all classes,
same and different, are maximized and still maintain the trait of the
class as the data-to-class distance remains. This cause data to se-
cure the characteristic of class but enlarge the diversity between in-
dividual data at the same time. The following event makes training
difficult and proceed to better training. Therefore, higher quality of
data is generated. Accordingly, we argue that excluding label in-
formation during training stage lead to superior performance in this
DCASE 2023 challenge task7-B.

4.2. Performance Comparison

In Table 2, we compare the four systems for average FAD and class-
wise FAD, respectively. The results in the table demonstrate the C-
SupCon loss performs better than 2C loss function. We claim that
as C-SupCon loss adds data-to-source relation to 2C loss using pre-
trained features, which supports the feature learning of GAN and
further stabilizes the training process.

Jung S0 and Jung S2 are set τd = 0.1, τc = 0.1, Jung S1 and
Jung S3 are set τd = 0.1, τc = 1.0. As can be seen in Table 2,
increasing τc from 0.1 to 1.0 showed greater performance. What
τc increases is to reduce the strength of the data-to-class relation.
Compared to other classes, the ‘GunShot’ class dropped more than
1 when τc = 1.0 than when τc = 0.1. We postulate this phe-
nomenon is based on the characteristic of the ’GunShot’ class. Due
to the various traits such as each type of gun or the number of rounds
shot exhibits, the data contains high degree of acoustic diversity
within same class. Decreasing the strength of the data-to-class re-
lationship increases the diversity of data features belonging to the
same class while retaining the characteristics of the class to which
the data features belong. This will lead to improved performance.
Accordingly, we can infer that increasing τc can enlarge the vari-
ances of each data feature within class, which leads to secure the
diversity of synthesized audio samples within class.

Table 3 refers to performance comparison between baseline
method with our proposed methods: 2C loss and C-SupCon loss.
Our two techniques outperform baseline methods in every way. In
particular, in ‘DogBark’ and ‘Rain’ classses, our baseline frame-

Class Baseline Ours
2C C-SupCon

DogBark 13.411 2.829 2.749
Footstep 8.109 3.807 3.765
GunShot 7.951 3.634 4.913
Keyboard 5.230 4.222 2.867

MovingMotorVehicle 16.108 15.673 14.364
Rain 13.337 3.534 3.709

Sneeze/Cough 3.770 1.717 1.466
Average FAD 9.702 5.060 4.833

Table 3: The FAD score on each class index.

works performed 4 to 5 times better than the existing baseline. We
speculate that this remarkable performance is due to the proposed
frameworks’ ability to enhance variance of data features within the
class while keeping distinct characteristic of class using our pro-
posed loss function. In Table 3, we can see that improvement of
FAD performance of class ‘Moving Motor Vehicle’ is rather low.
We infer this outcome is based on insufficient variance of audio
data within the class. This trait induce generation of similar data in
the class regardless of the methods. To sum up, our proposed frame-
works achieve the average FAD score of 5.060 and 4.833, which is
the half of the baseline.

5. DISCUSSION

In this report, we arranged two types of framework for the DCASE
2023 challenge task7-B. Our methods are based on ContraGAN
and C-SupConGAN, and aim to secure the particular class features
while securing the distinctiveness of individual data within class
by data-to-data relations, data-to-class relations, and data-to-source
relations. The frameworks we propose show the performance of
achieving a FAD score of 4.833 and 5.060, which outperform the
existing baseline by a large margin. Still, our methods fall to gener-
ate more diverse audio samples from classes with low data diversity,
such as ‘Moving Motor Vehicle’ class provided in the development
set. We intend to supplement this part through future work.
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