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ABSTRACT

This technical report describes the system participating in the
DCASE 2023, Task3: Sound event localization and detection
evaluated in real spatial sound scenes challenge. The sys-
tem contains data augmentation strategies, neural network
models, and ensemble methods. For track A, we adopt ro-
tation and Specmix data augmentation strategies to increase
the amount of data samples and improve robustness. The
neural network model, which is based on baseline networks,
consists of residual convolution neural networks with spa-
tial attention, recurrent neural networks, and multi-head self-
attention. Moreover, we propose several ensemble methods,
such as windowing, weight averaging, and clustering-based
output selection. For track B, we extend the audio-only base-
line model to the audio-visual model with 3D convolution
layers using raw video, optical flow, and object detection fea-
tures. Through a series of relevant experiments, the proposed
methods achieve competitive results compared to the base-
line and state-of-the-art methods.

Index Terms— DCASE2023, data augmentation, atten-
tion, ensemble, sound event localization and detection

1. INTRODUCTION

Human can distinguish and localize different sounds com-
ing from several directions. By mimicking this behavior,
various approaches for sound event localization and de-
tection(SELD) tasks are introduced and actively explored.
SELD is a crucial part of the many applications, including
human-computer interaction, robot audition, and scene un-
derstanding.

SELD is the task that identifying both the direction of ar-
rival(DOA) and event class from sounds so that machines can
have the same capabilities. Since 2019, numerous methods
have been proposed to solve problems of the SELD through
the DCASE challenge [1–6]. In the challenge, methods fo-
cus on various aspects, such as preprocessing, data augmen-
tation, model structure, output format, loss function, post-

processing, and ensemble. Mazzon et al. [1] proposed spatial
data augmentation method for first-order ambisonic(FOA)
domain data. Adavanne et al. [5] proposed a end-to-end con-
volutional recurrent neural networks(CRNN), named SELD-
net, to solve polyphonic SELD problems. It was utilized for
a joint task of sound event detection and regression-based
DOA estimation. Shimada et al. [7, 8] presented activity-
coupled cartesian direction of arrival(ACCDOA) representa-
tion, which is suitable to represent overlapped sound events.
Although the performance is improved gradually with these
researches, it is ambiguous which method makes better re-
sults because many papers conducted experiments with dif-
ferent settings,

In this study, we propose several methods for SELD on
data augmentation, neural networks, and ensemble aspects.
With the series of experiments, we found some data augmen-
tation solutions, such as rotation, and Specmix [9]. We also
propose the sound event localization and detection model
based on convolution neural networks, recurrent neural net-
works, and attention. Finally, we present rotation, window-
ing, and clustering-based ensemble and weight-averaging en-
semble methods.

2. TRACK A

The First-order ambisonic(FOA) recordings are used as in-
put signals of the proposed model. The FOA recordings are
transformed into the log-mel spectrogram and its intensity
vectors. The output labels are converted into the ACCDOA
and multi-ACCDOA formats. Two data samples are merged
by Specmix mixed sample data augmentation policy.

2.1. Features

The STARSS22 dataset provides 2 recording formats: FOA
and microphone array. We used 4-channels 24kHz FOA
recording format. First we extract two time-frequency do-
main features:multichannel log-mel Spectrogram, and Inten-
sity Vector(IV). Every features are computed from the Short-
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Time Fourier Transform(STFT). The hop length, window
length, nfft, and mel-coefficients of the features are 20ms,
40ms, 1024, and 128, respectively. Let log mel-spectrogram
coefficients are xt,f , where t, f denote the time frame and the
frequency bin. For the FOA format, the intensity vector [10]
are

It,f,c =

 R{wt,f ∗ xt,f}
R{wt,f ∗ yt,f}
R{wt,f ∗ zt,f}

 (1)

where w, x, y, and z are ambisonic channels, and subscript
c denotes the channel index. Finally, we can extract 7 chan-
nels of time-frequency features, which consist of 4 log-mel
spectrograms and 3 IVs.

2.2. Data augmentation

Rotation We applied rotation [1] data augmentation to
STARSS22 data and DCASE 2022 simulated data. We se-
lected 8 directions that are the same settings of [11].
Specmix We used a mixed sample data augmentation strat-
egy, named Specmix [9], to promote the generalization of
the model. The goal of Specmix is to generate a new training
sample (x̃, ỹ) by combining two training samples (xA, yA)
and (xB , yB). The combining operation is

x̃ = M⊙ xA + (1−M)⊙ xB (2)
ỹ = λyA + (1− λ)yB (3)

where M ∈ {0, 1}F×T denotes a binary mask indicating
where to drop out and fill in from two images, 1 is a binary
mask filled with ones, and ⊙ is element-wise multiplication.
The combination ratio λ between two data points is the num-
ber of pixels of xA in x̃. For the classification task, which is
analyzed in Specmix [9] paper, λ is calculated on the whole
spectrogram. In contrast, λ is calculated on each time bin be-
cause the outputs are predicted along the time axis. Specmix
has frequency masking and time masking. The number of
frequency mask ftimes is 3 and the width of each frequency
mask γ is 0.1. The number of time mask ttimes is 3 and the
width of each time mask γ is 0.1.

2.3. Network architecture

Fig. 1 (a) illustrates the overall architecture of our system for
track A. The networks consist of SE-ResNet, RNN, MHSA,
and Linear layers. The SE-ResNet contains stacks of convo-
lution layer and squeeze-excitation layer [12] with the resid-
ual connection. The RNN, MHSA, and linear layers are the
same as the challenge baseline.

2.4. Ensemble

We propose a windowing-clustering ensemble, a rotation-
clustering ensemble, and a model weight-averaging ensem-
ble. For the windowing-clustering ensemble, a window

Figure 1: The architecture of the proposed model. (a) Track
A (b) Track B

slides along the time axis in the inference time. The window
length is 5s, which is the same as the model input length, and
the hop length is 100ms. After the windowing, each times-
tamp of the label has 50 candidates. We use DBSCAN [13]
to find outliers in the candidates. The candidates except out-
liers are averaged. For the rotation-clustering ensemble, we
estimate the candidates with an 8-way rotation augmentation
and remove outliers with DBSCAN clustering. The output
may not rely on a single estimation thanks to these two en-
semble methods.

Since the model is sensitive to recent training samples,
we save the 10 best model weights using the evaluation
dataset during the training phase and averaging them. This
model weight-averaging ensemble improves robustness and
overall performance.

3. TRACK B

Fig. 1 (b) illustrates the architecture of our system for track
B. The audio networks are the same as SELDnet, and the
visual networks consist of 3D convolution layers and lin-
ear layers. The visual features are raw video, optical flow,
and YoloX [14] object detection features. Each feature pass
through 3D convolution layers and linear layers and add to
the MHSA output of the audio networks.
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Table 1: Submission configuration.

Configuration Params.
Track A 1 Multi-ACCDOA 69M
Track A 2 ACCDOA 69M
Track A 3 Ensemble 138M
Track A 4 Ensemble 2 138M
Track B 1 Multi-ACCDOA 7M

4. EXPERIMENTS

4.1. Dataset

We used STARSS22 [15] Dataset, which contains 3 hours
recordings of real scenes. Despite its recording environments
being well-formulated, the amount of data is too small to
train neural networks robustly. To increase the amount of
data while maintaining quality, we used synthetic datasets
and several data augmentation methods. We used DCASE
2022 simulated data1, which contains 20 hours recordings.
In addition, recorded sound samples selected from FSD50K
[16] dataset and convoluted with SRIRs from TAU-SRIR
DB2 to generate 4000 1-minute long multi-channel scene
recordings with a maximum polyphony of 3.

4.2. Experimental setup

We use the Adam [17] optimizer with a learning rate from
5e-3 to 1e-5. The batch size is 32. Table 1 shows the setups
of our submitted systems. Submission #1 is multi-accdoa
output format, and Submission #2 is accdoa output format
with 3 ensemble methods. Submission #3 and #4 integrated
candidates of Submission #1 and Submission #2 when the
rotation-clustering ensemble is performing.

4.3. Results

We evaluate our proposed method on the development
dataset of STARSS22 [15]. The experiment results are sum-
marized in Table 2. As shown in the table, each proposed
single model and ensemble model outperforms the baseline
systems by a large margin.

5. CONCLUSION

This report proposes an ensemble system to solve the SELD
task in DCASE 2023 challenge task 3. We focus on data
augmentation and ensemble methods. We adopt data aug-
mentation approaches to expand the official dataset and syn-
thetic dataset. Several model ensemble methods are used

1https://zenodo.org/record/6406873
2https://zenodo.org/record/6408611

Table 2: Comparison of baselines and submissions with the
development set (Track A).

ER F1 LE LR
Baseline 0.57 29.9 22.0 47.7

Sub1 0.47 52.7 15.2 68.8
Sub2 0.49 51.1 15.5 69.7
Sub3 0.47 52.9 15.0 69.3
Sub4 0.47 51.7 15.2 70.2

Table 3: Comparison of baselines and submissions with the
development set (Track B).

ER F1 LE LR
Baseline 1.07 14.3 48.0 35.5

Sub1 0.52 45.1 17.8 59.9

to get a more robust SELD estimation. The neural net-
works are trained to acquire candidates in ACCDOA and
multi-ACCDOA representation formats. For the audio-visual
SELD task, we additionally used raw video, optical flow, and
object detection features, which pass through 3D convolu-
tion layers. The experimental results show that the proposed
method outperforms the baseline systems by a large gap.
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