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ABSTRACT 

This report proposes a frequency dynamic convolution (FDY) 

with a large kernel attention (LKA)–convolutional recurrent 

neural network (CRNN) with a pre-trained bidirectional encoder 

representation from audio transformers (BEATs) embedding-

based sound event detection (SED) model that employs a mean-

teacher and pseudo-label approach to address the challenge of 

limited labeled data for DCASE 2023 Task 4. The proposed FDY 

with LKA integrates the FDY and LKA module to effectively 

capture time-frequency patterns, long-term dependencies, and 

high-level semantic information in audio signals. The proposed 

FDY with LKA–CRNN with a BEATs embedding network is 

initially trained on the entire DCASE 2023 Task 4 dataset using 

the mean-teacher approach, generating pseudo-labels for weakly 

labeled, unlabeled, and the AudioSet. Subsequently, the proposed 

SED model is retrained using the same pseudo-label approach. A 

subset of these models is selected for submission, demonstrating 

superior F1-scores and polyphonic SED score performance on the 

DCASE 2023 Challenge Task 4 validation dataset. 

Index Terms—Sound event detection (SED), semi-

supervised learning, pseudo-labeling, frequency dynamic 

convolution (FDY), large kernel attention (LKA) 

1. INTRODUCTION 

The objective of sound event detection (SED) is to recognize and 

classify individual sound events originating from acoustic signals, 

along with their corresponding time stamps. The potential 

applications of the SED model extend beyond audio captioning 

[1] to various domains, such as wildlife tracking [2], equipment 

monitoring [3], and medical monitoring [4]. In recent years, SED 

has been extensively researched using deep learning models [5]. 

However, a significant challenge in using deep learning for SED 

is the requirement of strong labels, which are expensive and time- 

consuming. This problem has led to research on developing 

weakly supervised and semi-supervised learning techniques to 

overcome this challenge. 

Last year, we proposed a selective kernel attention–residual 

convolutional recurrent neural network (CRNN) for the DCASE 

2022 Challenge Task 4 and achieved fourth place in terms of 

PSDS Scenarios 1 (PSDS1) and 2 (PSDS2), with scores of 0.514 

and 0.713, respectively, for the evaluation dataset. Nevertheless, 

the model developed last year encountered specific issues. Unlike 

images, two-dimensional (2D) audio data, like spectrograms, are 

not shift-invariant along the frequency axis. Employing 

conventional convolutional methods may potentially degrade the 

performance of SED, particularly for nonstationary events over 

time, such as a dog barking or a cat meowing. Additionally, 

relying only on averaging an attention mechanism can result in 

reduced performance due to the variability in event duration and 

repetitive sound events. 

In this submission, we aim to improve the SED model 

proposed for the DCASE 2022 Challenge Task 4 by replacing the 

residual convolutional blocks with frequency dynamic 

convolution (FDY) [8] and large kernel attention (LKA) [9] 

blocks, which are referred to as FDY–LKA blocks. Compared to 

DCASE 2022 Task 4, DCASE 2023 Task 4 announced a new 

baseline using built-in bidirectional encoder representation from 

audio transformers (BEATs) embedding [7]. Consequently, this 

year’s baseline performance was much better than last year’s 

baseline due to better capturing high-level semantic information. 

Motivated by this embedding approach using a pretrained 

model, we also employ BEATs embedding as the input feature for 

SED. In particular, the last FDY–LKA block outputs are 

concatenated with BEATs embedding and then they are inputted 

to a recurrent neural network (RNN). In addition, two-stage-based 

semi-supervised learning strategies are applied to train the 

proposed SED model with weakly labeled and unlabeled data. Per 

DCASE 2023 Task 4 rules, we submit an FDY–LKA-CRNN 

model without external datasets, three with BEATs embeddings, 

and four ensemble models from first and second stage based on 

the best PSDS1, PSDS2, sum of PSDS1 and 2 value, and all 

models. 
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Following this introduction, Section 2 describes the dataset 

and input features of the SED model in this work. Section 3 

proposes the FDY–LKA-CRNN with the BEATs embedding 

model and learning strategy. Then, Section 4 covers the 

experimental results of the suggested SED model on the DCASE 

2023 Task 4 validation dataset. Finally, Section 5 concludes this 

report. 

2. DATASET 

The DCASE 2023 Challenge Task 4 comprises four datasets: 

weakly labeled data, unlabeled in-domain training data, strongly 

labeled synthetic data, and strongly labeled real data, with all 

audio clip data lasting 10 seconds. The strongly labeled synthetic 

dataset is distinct from the other datasets in that it is created by 

Scraper [11]. The weakly labeled dataset contains only class 

labels and is annotated for 1,578 clips. The unlabeled in-domain 

training dataset contains 14,412 audio clips. Finally, the real 

strongly labeled and synthetic datasets contain 3,470 and 10,000 

clips, respectively. Besides the DCASE dataset, we employed 

AudioSet, which offers weakly labeled data. The DCASE and 

AudioSet datasets share overlapping labels, such as “blender,” 

“cat,” and “vacuum cleaner.” 

The following preprocessing procedures used the provided 

data as input to the model, starting by resampling the mono-

channel signals from 44.1 to 16 kHz. Then, the audio signals are 

split into frames of 2,048 samples, each with a hop length of 160 

samples. Each frame first performs a 2,048-point fast Fourier 

transform (FFT) employing 2,048 points, followed by a 128-

dimensional mel-filterbank analysis. There are 1,001 frames for 

each 10 seconds audio clip. As a result, the input feature 

dimensions are 1001x128. The retrieved mel-spectrogram 

features are normalized using the mean and standard deviation for 

all training audio samples. 

3. PROPOSED FDY–LKA-CRNN-BASED SED MODEL 

Fig. 1 illustrates the training process of the proposed FDY–LKA-

CRNN-based SED model, which employs a two-stage mean-

teacher model. Further sections explain the proposed FDY–LKA-

CRNN with BEAT embedding architecture and the two-stage 

semi-supervised learning. 

3.1. Model architecture 

Table 1 presents the proposed FDY–LKA-CRNN with BEAT 

embedding architecture, comprising one stem block, six FDY–
LKA blocks, fusion block, and one RNN block. Initially, all input 

features of each audio clip are grouped to create a (1001×128×1)-

dimensional spectral image as the input to the stem block. The 

shape of (x × y × z) indicates (frame × frequency × channel), and 

(x × y) means (frame × channel). The stem block consists of one 

convolutional block with 32 kernels for the first convolutional 

block. Convolution stem block has 3×3 kernels with a stride of 1×1 

and received batch normalization, gated linear unit (GLU) 

activation, and a 2×2 average pooling layer. 

Next, the output of the stem block is processed by the first 

FDY–LKA block that consists of a FDY, LKA module, batch 

normalization, GLU, and an average pooling layer, as presented 

in the table. Afterward, the output of each FDY–LKA block is 

passed to the next FDY–LKA block. Thus, the output of FDY–

LKA-CNN becomes a (250×1×256)-dimensional feature map. 

The detailed network architecture of FDY–LKA blocks is 

described in the following section. 

Along with FDY–LKA, we adopt embedding extracted by 

the BEATs encoder to use high-level semantic information 

properly. We employed average pooling or nearest neighbor 

interpolation to align the dimensions between the output of FDY–

LKA-CNN and BEATs embedding. Both methods are applied in 

first and second stage for model diversity. 

Then, this feature map is combined with the BEATs 

embedding, which has the dimensions (250×1×768). The 

combined feature map, with dimensions of (250×1×1024), is 

processed through a fully connected (FC) layer that reduces the 

channel size from 1024 to 256. The set of procedures executed to 

utilize BEATs embedding is referred to as Fusion Block. After 

then, this feature map is applied to the RNN block, consisting of 

two bidirectional gated recurrent units (Bi-GRUs) to learn the 

temporal context information, where a rectified linear unit 

(ReLU) is used as an activation function for each Bi-GRU. 

 

Figure 1: The training process for the proposed FDY–LKA-CRNN-based SED model, which entails a two-stage mean-teacher model 

comprising FDY–LKA-CRNN, trained through semi-supervised learning. 
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Finally, to attain a strong label for each audio clip, the 

(250×256)-dimensional output of the RNN block is processed by 

a FC layer and then a sigmoid function, resulting in a (250×10)-

dimensional output, where 10 indicates the number of sound 

events to be detected. The attention layer is implemented to obtain 

a weak label by squeezing the frame dimensions. 

3.2. FDY–LKA 

 

The FDY applies a frequency-adaptive kernel to release the 

translation equivariance of the 2D convolution along the 

frequency axis for physical consistency with the time-frequency 

patterns in sound events. First, it extracts frequency-adaptive 

attention weights from input by applying average pooling over the 

time axis followed by two 1D convolutions along the channel 

axis. Between the two 1D convolutional layers, batch 

normalization and ReLU are applied. Finally, we apply an 

attention weight to the input feature map using an element-wise 

product operation. 

The output feature map of FDY passes through the LKA 

module, effectively extracting attention maps and capturing long-

term dependencies from relevant frames and channels. The LKA 

module consists of five steps: 1×1 convolution, Gaussian error 

linear unit (GELU), depth-wise convolution, depth-wise dilation 

convolution, and 1×1 convolution. Through the LKA module, the 

input feature map becomes the attention feature map, and self-

attention is performed with an element-wise product operation 

between the input and output attention map. After the attention 

mechanism, the output feature map is batch-wise normalized and 

passes a convolutional block composed of 1x1 convolution, 3x3 

depth-wise convolution, GELU, and a 1x1 convolutional layer. 

Fig. 2 illustrates the FDY–LKA block incorporating FDY 

and LKA module. As depicted, the average pooling layer is 

applied to the output of the feature map obtained using LKA. 

3.3. Two-stage semi-supervised learning 

 

The FDY–LKA-CRNN with the BEATs embedding-based SED 

model is trained using the mean-teacher approach based on a two-

stage training procedure. After first stage, we generate strong 

pseudo-labels for the weakly labeled, unlabeled, and AudioSet 

datasets employed in second stage training. 

We employ ensemble prediction derived from the student 

and teacher models to improve the quality of pseudo-labels, 

demonstrating the highest valid PSDS in the first, second, and 

combined scenarios. By thresholding the ensemble results by 0.5, 

we can obtain strongly labeled pseudo-labels for DCASE weakly 

labeled and unlabeled data. In the AudioSet, we apply applied the 

confidence score generated from weak predictions to select 

samples associated with DCASE classes. Through the confidence 

score and prediction results, strong pseudo-labels for the C-th 

class and  F-th frame 𝑝𝑙𝐶
𝐹  are determined using the following 

equation: 

 

      𝑝𝑙𝐶
𝐹  =  {

  1,  if  𝑝
𝐶
𝐹  > 0.5 and 𝑝𝐶 > 0.7 and  𝑙𝐶 = 1

0,  otherwise,                                               
          (1) 

 

where 𝑙𝐶  denotes the weak label of the C-th class, 𝑝𝐶 represents 

the weak prediction value of the C-th class, and 𝑝𝐶
𝐹  indicates the 

strong prediction value of the C-th class and F-th frame. This 

method allows strong pseudo-labels of weakly labeled AudioSet 

data for the next stage. 

Table 1. Network architecture of the proposed FDY–LKA-

CRNN-based SED model, where the Fusion Block is performed 

when using BEATs embedding. 

Name Layers Output shape 

Input layer Input : log-mel spectrogram 1001×128×1 

Stem block 
3x3, Conv2D, @32 GLU, BN 

2x2 average pooling layer 
500×64×32 

FDY–LKA 

blocks 

(
FDY(K=4), @64, GLU, BN 

LKA module
2x2 average pooling layer

) 250×32×64 

(
FDY(K=4), @128, GLU, BN 

LKA module
1x2 average pooling layer

) 250×16×128 

(
FDY(K=4), @25, GLU, BN 

LKA module
1x2 average pooling layer

) 250×8×256 

(
FDY(K=4), @256, GLU, BN 

LKA module
1x2 average pooling layer

) 250×4×256 

(
FDY(K=4), @256, GLU, BN 

LKA module
1x2 average pooling layer

) 250×2×256 

(
FDY(K=4), @256, GLU, BN 

LKA module
1x2 average pooling layer

) 250×1×256 

Fusion Block 

(optional) 

Average pooling or interpolation 

on BEATs embedding 
250×768 

Channel-wise Concatenation 

(Output of FDY–LKA blocks (250, 256)

BEATs embedding (250, 768)
)  

250×1024  

Fully connected layer  

(1024, 256) 
250×256 

Recurrent 

neural network 

block 

( 256 Bi-GRU cells ) x 2 250×512 

 

 
Figure 2: Structure of an FDY–LKA block composed of (a) a 

frequency dynamic convolution layer and (b) a large kernel 

attention module. 
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4. EXPERIMENTAL RESULTS 

4.1. Model training 

The FDY–LKA-CRNN-based SED model parameters were 

initialized in the first training stage using the Xavier initialization. 

The minibatch-wise adaptive moment estimation optimization 

technique was employed, involving decoupling the weight decay 

from the gradient-based updates. Additionally, a dropout method 

was applied to the FDY–LKA-CRNN model at a rate of 0.5. The 

learning rate was set according to the ramp-up strategy, with the 

maximum learning rate reaching 0.001 after 50 epochs. Several 

augmentation techniques, such as the time-frequency shift, time 

mask, mix-up, and filter augmentation, were applied to the 

training data. In the second stage, all training strategies remained 

identical to those used in first stage. 

4.2. Discussion 

The performance of the proposed SED model was evaluated using 

the measures defined in the DCASE 2023 Challenge Task 4 [12], 

such as an event-based F1-score and PSDS [6]. Table 2 compares 

the performance between the baseline with BEATs embedding and 

various versions of the proposed SED models on the validation 

dataset of the DCASE 2023 Challenge Task 4. As presented in the 

table, FDY–LKA-CRNN-based mean teacher model scored 0.7% 

higher, but 0.0203 and 0.072 lower in the F1-score, PSDS1, and 

PSDS2 than baseline with BEATS embedding achived. In 

comparison to the existing baseline, both FDY–LKA-CRNN 

interpolation and FDY–LKA-CRNN average pooling model have 

demonstrated superior performance, with increases in F1-score by 

5.7% and 5.3% respectively, improvements of 0.0355 and 0.339 

points in PSDS1, but 0.0051 and 0.0115 lower in the PSDS-

scenario 2. Furthermore, the second stage interpolate model 

(single model) scored 0.1%, 0.0162, and 0.0237 higher on the F1-

score, and the second stage averag PSDS1, and PSDS2, 

respectively, than the Stage 1 FDY–LKA-CRNN interpolation 

model. Also, the second stage average pooling model (single 

model) scored 0.9%, 0.021, and 0.032 higher on the F1-score, and 

the second stage averag PSDS1, and PSDS2, respectively, than the 

Stage 1 FDY–LKA-CRNN average pooling model. 

Finally, we constructed ensemble models according to 

different model combinations between stages 1 and 2. Among 

various ensemble models, it was shown that an ensemble model 

composed of the Top 1–48 models improved F1-score, PSDS1, 

and PSDS2 by 8.0%, 0.0757, and 0.0284, respectively, compared 

to the baseline provided by DCASE 2023 Task 4. 

5. CONCLUSION 

This report presents an FDY–LKA-CRNN with a BEATs 

embedding-based SED model for DCASE 2023 Challenge Task 4, 

employing a pseudo-label and mean-teacher approach. The 

proposed FDY–LKA-CRNN with a BEATs embedding-based 

SED model was trained on the entire DCASE dataset in the first 

stage. Afterward, the trained proposed SED model generates 

pseudo-labeled data for unlabeled and weakly labeled data, 

including the AudioSet. This approach aimed to overcome the 

challenges posed by the lack of strong labels and to leverage the 

strengths of deep learning models for improved SED performance. 

By combining the FDY and LKA modules, we sought to 

effectively capture time-frequency patterns and long-term 

dependencies in the audio data. The proposed FDY-LKA-CRNN-

based SED model was evaluated on the DCASE 2023 Task 4 

validation dataset. The performance of various ensemble models 

derived from model checkpoints was also explored. The results 

demonstrated that an ensemble model comprising the Top 1–48 

models in the F1-score achieved a 8.0% improvement, a 0.0757 

increase in PSDS1, and a 0.0284 enhancement in PSDS2, 

compared to the baseline provided by DCASE 2023 Task 4. 
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