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ABSTRACT

In this technical report, a low-complexity deep learning system for
acoustic scene classification (ASC) is presented. The proposed
system comprises two main phases: (Phase I) Training a teacher
network; and (Phase II) training a student network using distilled
knowledge from the teacher. In the first phase, the teacher, which
presents a large footprint model, is trained. After training the
teacher, the embeddings, which are the feature map of the sec-
ond last layer of the teacher, are extracted. In the second phase,
the student network, which presents a low complexity model, is
trained with the embeddings extracted from the teacher. Our ex-
periments conducted on DCASE 2023 Task 1 Development dataset
have fulfilled the requirement of low-complexity and achieved the
best classification accuracy of 57.4%, improving DCASE baseline
by 14.5%.

Index Terms— Mixup augmentation, Convolutional Neural
Network (CNN), spectrogram, late fusion.

1. INTRODUCTION

To deal with the ASC challenge of mismatched recording devices,
the state-of-the-art systems mainly leverage ensemble techniques:
Ensemble of spectrogram inputs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
or ensemble of different classification models [13, 14, 15]. Al-
though these approaches prove effective to deal with the issue of
mismatched recording devices and achieve potential results, they
present large model complexity. This lead to challenges to apply
ASC components on edge-devices. Recently, DCASE 2021 Task
1A challenge [16] focuses on dealing the issue of high-complexity
model. The challenge requires the maximum model complexity of
128 KB. Furthermore, the next challenges of DCASE 2022 Task 1
and DCASE 2023 Task 1 do not allow to use pruning techniques as
the pruning parameters still occupy the memory and cost the com-
putation on edge-devices. These challenges also require the maxi-
mum MACs (Multiply-Add cumulation) of 30 M.

In this technical report, a low-complexity deep learning frame-
works using teacher-student scheme and multiple spectrograms for
ASC task is presented.
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Figure 1: The high-complexity teacher network architecture.

2. THE PROPOSED SYSTEM

2.1. The teacher network architecture

As Figure 1 shows, the proposed teacher network can be separated
into three main steps: the front-end feature extraction, the online
data augmentation, and the convolutional neural network (CNN)
based network. Initially, a raw audio signal is firstly transformed
into different spectrograms of 128×132 by using MEL filter [17],
Gammatone filter [18], or CQT [17] with the FFT number, Hanna
window size, hop size, and the filter number set to 4096, 2048, 326,
and 128. Next, we apply delta and delta-delta on these spectro-
grams to generate three-dimensional spectrograms of 128×128×3
(The original spectrogram, delta, and delta-delta). We then apply
the Mixup [19, 20] augmentation method on the spectrograms. We
finally feed the augmented spectrograms into back-end deep learn-
ing networks for classification, referred to as the teachers. As we
use three spectrograms, we train three individual teachers.

Regarding the teacher architecture, it comprises two main parts:
a CNN-based backbone followed by a dense block. The CNN-based
backbone, which presents a residual-inception based architecture, is
reused from [21, 10]. The dense block comprises two dense layers
(Dense Layer 01 and Dense Layer 02), which is shown in the lower
part of Figure 2. After training the teachers, the embeddings, which
are the feature map at the first fully connected layer of the dense
block (FC (64)), are extracted for training the student networks.
The teachers are trained using Entropy loss (Loss1) as shown in
Figure 2.

2.2. The student network architecture

A student network architecture is presented in Table 1. As we
use three spectrograms, we develop three individual students which
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Table 1: The low-complexity student network architecture.

Layers Output
Input 128×128×3
Convolution ([2×2] @ C out1=16) - ReLU - BN - AP [2×2]- Dropout (10%) 64×64×16
Convolution ([2×2] @ C out2=16) - ReLU - BN - AP [2×2] - Dropout (15%) 32×32×16
Convolution ([2×2] @ C out3=16) - ReLU - BN - AP [2×2] -Dropout (20%) 16×16×32
Convolution ([2×2] @ C out4=32) - ReLU - BN - GAP - Dropout (25%) 32
FC (64) - ReLU - Dropout (30%) 64
FC (10) - Softmax 10

share the same network architecture. As the configuration shows in
Table 1, three student presents 22962 trainable parameters, which
occupy 88704 Byte (one parameter is presented by 32 bit) and
29267550 MACs on an edge device. Training the students is pre-
sented in Figure 2 with two loss functions (Loss2 and Loss3). The
Loss3 is traditional Entropy loss which is applied to the final layer
(Softmax layer) for classification. Meanwhile, the Loss2 is mean
squared error (MSE) which is applied to the fully connected layer
(FC (64)) of the student and the 64-dimensional embeddings ex-
tracted from the teacher. During training the student, the Mixup
data augmentation is not applied and the ratio of Loss2 and Loss3
is empirically set to 1:1.

As we apply three spectrograms of CQT, GAM, and Mel, we
fuse the probability results obtained from three individual students.
In particular, we conduct experiments over individual student net-
work with each spectrogram input, then obtain predicted probability
of each network as p̄s = (p̄s1, p̄s2, ..., p̄sC), where C is the cate-
gory number and the sth out of S networks evaluated. Next, the pre-
dicted probability after PROD fusion pf−prod = (p̄1, p̄2, ..., p̄C)
is obtained by:

p̄c =
1

S

S∏
s=1

p̄sc for 1 ≤ s ≤ S (1)

Finally, the predicted label ŷ is determined by

ŷ = argmax(p̄1, p̄2, ..., p̄C) (2)

3. EVALUATION SETTING AND RESULTS

3.1. TAU Urban Acoustic Scenes 2022 Mobile development
dataset [22]

This report presents the results on DCASE 2023 Task 1 Develop-
ment set, which was proposed in DCASE 2023 challenge [23]. In
this challenge, the limitation of model size is set to 128 KB of
trainable parameters and the maximum MACs is set to 30 M, not
allow to use pruning techniques, and evaluate on 1-second audio
segment. The dataset is slightly unbalanced, being recorded across
12 large European cities: Amsterdam, Barcelona, Helsinki, Lisbon,
London, Lyon, Madrid, Milan, Prague, Paris, Stockholm, and Vi-
enna. It consists of 10 scene classes: airport, shopping mall (in-
door), metro station (underground), pedestrian street, public square,
street (traffic), traveling by tram, bus and metro (underground), and
urban park. The audio recordings were recorded from 3 different
physical devices namely A (10215 recordings), B (749 recordings),
C (748 recordings). Additionally, synthetic data for mobile de-
vices was created based on the original recordings, referred to as
S1 (750 recordings), S2 (750 recordings), S3 (750 recordings), S4
(750 recordings), S5 (750 recordings), and S6 (750 recordings).

To evaluate, we follow the DCASE 2023 Task 1 challenge [23],
use two subsets known as Training (Train.) and Evaluation (Eval.)
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Figure 2: Training the student network using knowledge distillation.

from the Development set for training and testing processes, respec-
tively. Notably, two of 12 cities and S4, S5, S6 audio recordings are
only presented in the Eval. subset for evaluating the issue of mis-
matched recording devices and unseen samples.

3.2. Network Implementation

All the CNN based architectures in this paper are conducted by Ten-
sorflow frameworks. Training these architectures uses Adam algo-
rithm for the optimization. We run all experiments on the GPU
GeForce RTX 208.

3.3. Experimental Results

The experimental results are presented in Table 2. As Table 2
shows, results on GAM and MEL are competitive and outperform
the records of DCASE baseline and CQT spectrogram. The ensem-
ble of three models without and with using knowledge distillation
achieve accuracy of 56.8% and 57.4%, respectively. The best model
using ensemble of multiple spectrograms and knowledge distillation
improves the DCASE baseline by 14.5% The log-loss score of this
system presents 1.333 which is less than the DCASE score of 1.575.
However, this system requires more memory of 88.7 MB compared
with DCASE baseline of 46.5 MB.

4. CONCLUSION

We have presented a low-complexity system for ASC task, which
leverages teacher-student scheme and multiple spectrogram inputs.
Our proposed low-complexity ASC system achieves an accuracy of
57.4%, a log-loss score of 1.333, 88.7 KB memory occupation, and
29.27 M MACs.
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