Detection and Classification of Acoustic Scenes and Events 2023

Challenge

TAKE IT SERIOUSLY: IMPROVING ON LAST YEAR WITH ALL SORTS OF TRICKS
Technical Report

Theodore Lamort de Gail, Barttomiej Zgorzyriski, Anna Ples, Kamil Gorzyriski

Samsung R&D Institute Poland, Warsaw, Poland
{t.Jamort, b.zgorzynski, a.ples, k.gorzynski2 } @samsung.com

ABSTRACT

In this report, we present our solution to DCASE 2023, task 6B:
Language-Based Audio Retrieval. We employ a bi-encoder architec-
ture trained using contrastive ranking loss. The audio encoder is an
ensemble of three pre-trained models (BEATS, VGGish, CLAP) with
added self-attention heads, while the text encoder is a pre-trained
MPNet. To address the small dataset size, we gather 1.7M caption-
audio pairs from YouTube videos. We use MixGen and paraphrasing,
as well as traditional audio augmentation, and Low-Rank Adaptation
(LoRA) for fine-tuning on Clotho.

We achieve 29.66% mAP@ 10 on the development-testing split
of Clotho using an ensemble solution, and 26.93% mAP@ 10 with
a single model. We also submit an ensemble of our solution and
CLAP.

1. INTRODUCTION

Language-Based Audio Retrieval is the task of retrieving audio
recordings from a database given a natural language description.
Our system uses the standard approach of a bi-encoder producing
text and audio embeddings, which are subsequently compared with
cosine similarity.

We encounter two significant challenges. The first revolves
around enhancing the system architecture, while the second and
more pressing pertains to the scarcity of data. To address them, we
have made notable advancements in our previous year’s solution [1].

As described in Section[T} we gather and filter a diverse range of
data, including our newly collected YouTube audio-caption pairs as
well as samples obtained from various additional sources. We employ
MixGen|[2] to combine multiple samples from distinct origins to
strengthen the data robustness further.

We employ an ensemble of pretrained audio expert models. The
specific details regarding architectural improvements can be found
in Section 3] In Section] we provide a description of the pre-
training and fine-tuning process. One of the critical differences is
incorporating Low-Rank Adaptation[3] to reduce overfitting while
fine-tuning our model on the Clotho 2.1[4] dataset.

We develop three distinct ensembles, as explained in Section 5}
The final results are detailed in Section @l

2. DATA

As the ground development dataset, we take Clotho v2.1[4]. We
support it with three more datasets that contain captioned audio
recordings: AudioCaps[5], SoundDescs[6] and MACS[7].
Furthermore, we include the Freesound[8]] dataset that we used
in our submission last year[1]. The set consists of 15K text-audio

pairs scraped from Freesound descriptions in a semi-supervised way
using a text classifier.

In order to scale up the training dataset, we add 1.7M caption-
audio pairs extracted from YouTube videos. We query for creative-
commons licensed clips that include subtitles. We search for closed
captions by matching text enclosed in square brackets, parentheses
and asterisks. We apply filtering heuristics such as discarding cap-
tions containing pronouns, numeric and punctuation signs, or any
of the words from a handmade blacklist (“subscribe", “inaudible",
“let’s", and so on). We use Spacy for Named Entity Recognition[9]
and name/gender statistics to replace person names with “man",
“woman" or “person”. We download the audio of the corresponding
clips with an addditional leading and trailing 3 seconds.

We notice that the captions are very thematically unbalanced:
a large portion of the data consists of a small set of common cap-
tions such as “music" and “applause". To even out the distribution,
training-time sampling is performed with custom weights. In order
to compute weights, first we embed each caption using all-mpnet-
base-v2 [10]. Next, we compute pairwise cosine similarity among
embeddings, with a batch size of n = 5000. The weight of the i-th
sample in the batch is then

n
w; = 1/Zsim(w,vj),
j=1

where sim is the cosine similarity, and vy is the embedding of
the k-th caption in the batch.

Augmentation. We use standard audio augmentation including
gain, time masking, random cropping, and noise mixing. Further-
more, we use Pegasus[11]] for caption paraphrasing and MixGen[2]
to create more pairs by concatenating captions and adding audio.

3. ARCHITECTURE

To establish cross-modal embeddings, we train an audio encoder
and a caption encoder with matching output dimensions. During
inference, the audio segments are selected based on cosine similarity.
For caption embeddings, we utilize the SentenceTransformers[10]
library, specifically the all-mpnet-base-v2 model. We do not freeze
the weights. We use a single linear layer to map this to a common
dimension of 256. In order to encode audio, we initially compute
per-time-frame embeddings using three pre-trained expert models.

1. CLAP [12] is a deep learning model that utilizes natural
language descriptions to learn and associate audio concepts.
By training on paired audio samples and textual descriptions,
CLAP can effectively understand and recognize specific audio

Detection and Classification of Acoustic Scenes and Events 2023

characteristics described in natural language. We only use the
audio encoder, with an inference window of 5 seconds and
a hop length of 2.5 seconds. Code can be found hereﬂ

2. BEATS [13]] We obtain a time-contextualized sequence of
embeddings of dimension 768, to which we apply one-
dimensional average pooling with a kernel of 60 and stride of
30, to obtain approximately 2 frames per second.

3. VGGish [14]. We use thisﬂ PyTorch implementation, with
a hop size modified to 0.5 seconds. The inference window is
1 second.

The weights of the audio experts are kept frozen. Each sequence
of embeddings is mapped through its own transformer model, and
then averaged. Finally, we take the average per-expert. For more
details, please refer to our report from last year [1]].

4. TRAINING

Sampling. During each training step, we adopt a random sampling
approach instead of iterating over the entire dataset. First, we
randomly select a dataset based on predefined weights, which are
hyperparameters. Then, we randomly choose an audio sample from
the selected dataset. In the case of our YouTube-collected data,
the selection is also weighted. If multiple captions are associated
with the chosen audio sample, we randomly select one of them.
We construct a batch of such positive pairs (audio;, caption,),
and consider all other pairs (audio;, caption]-) where 7 # j to be
negative.

Loss. The system is trained using a contrastive ranking loss with
a batch size of 512. For a given batch, if we let a1, a2, ..., ap be the
audio embeddings and 31, (2, ..., BB be the corresponding caption
embeddings, and we denote the cosine similarity between a; and [
by s;; then the loss is expressed as

1

1<i,j<B, i#j

[m + sij — Siil+ + [m + 550 — 4]+

where [-]+ is the hinge function max(-, 0) and m is the margin, set
to 0.4.

Optimizer. We utilize AdamW as our optimizer with
a learning rate of le-4. Additionally, we incorporate the CosineAn-
nealingWarmRestarts scheduler with the following parameters:
T() = 57Tmult = 2,17»,7”‘»,1 = 0.

Monitored metrics. We monitor validation loss, as well as
batch-wise validation text-to-audio R@1, expressed as

s = max(s;) |

where B is the batch size, s;; is as defined in the loss subsection,
and || - || is set cardinality.

Model pre-training. During the pre-training phase, all listed
datasets were utilized and split into validation and training sets. We
selected the model with the highest mAP@ 10 value on the Clotho

lgithub.com/microsoft /CLAP
2github.com/harritaylor/torchvggish

Challenge

evaluation set for further training.

Model fine-tuning. During the fine-tuning phase, we employed
only the AudioCaps and Clotho training and validation splits for
training and Clotho evaluation split for validation purposes. We
freeze most layers of the text encoder and of the self-attention heads
of the audio encoders. We apply Low-Rank Adaptation [3] to the
remaining layers, so that the fine-tuning process has a small num-
ber of trainable parameters (around 500k - 1.5M for different runs,
depending on the number of frozen layers and LoRA dimension).

5. SUBMISSION DESCRIPTION

Each of our submissions was an ensemble, constructed by taking
a weighted average of individual model predictions (i.e. matrices of
cosine similarities). For submission 1, we fit the weights automati-
cally across around 100 output similarity matrices, using gradient
descent and the InfoNCE loss calculated globally at each step, while
constraining the weights to be nonnegative. In the end 22 models
make a nonzero contribution. We assume that fitting these weights
directly to the validation data will not result in too much overfitting
because of the small number of parameters. Submission 4 was gen-
erated similarly to submission 1, but using a smaller set of models.

Submissions 2 and 3 were then created by further ensembling
the predictions from submission 1 with outputs from CLAP [12],
using weights of 2 for ours and + for CLAP in submission 2, and 2
for ours and % for CLAP in submission 3. However, the model and
weights that we obtained for CLAP achieved almost 60% mAP@10
on the Clotho evaluation split, much higher than reported in the paper
[12], strongly suggesting that the version we received was trained
on our evaluation data. Therefore, we deem the evaluation results
unreliable and we do not report them.

6. RESULTS

The results achieved by our best solution are presented in Table[I]
Please note that for competition purposes, this split was also used
for validation and checkpointing.

Table 1: Evaluation scores on Clotho v2.1

R@10
0.5793

mAP@10
0.2966

[R@L [R@5
[1. | 0.1908 | 0.4362

https://github.com/microsoft/CLAP
https://github.com/harritaylor/torchvggish
github.com/microsoft/CLAP
github.com/harritaylor/torchvggish

Detection and Classification of Acoustic Scenes and Events 2023

(1]

(2]

(3]

(4]

(5]

(6]

(7]

[8
(9]

—

(10]

(1]

[12]

[13]

(14]

7. REFERENCES

T. Lamort and D. Kicinski, “Take it easy: relaxing
contrastive ranking loss with cider,” in Detection and
Classification of Acoustic Scenes and Events, 2022. [Online].
Available: https://dcase.community/documents/challenge2022/
technical_reports/DCASE2022_Lamort_72_t6b.pdf

X. Hao, Y. Zhu, S. Appalaraju, A. Zhang, W. Zhang, B. Li,
and M. Li, “Mixgen: A new multi-modal data augmentation,”
2023. [Online]. Available: https://arxiv.org/abs/2206.08358

E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, L. Wang, and
W. Chen, “Lora: Low-rank adaptation of large language mod-
els,” 2021.

K. Drossos, S. Lipping, and T. Virtanen, “Clotho:
An audio captioning dataset,” 2019. [Online]. Available:
https://arxiv.org/abs/1910.09387

C. D. Kim, B. Kim, H. Lee, and G. Kim, “Audiocaps: Generat-
ing captions for audios in the wild,” in NAACL-HLT, 2019.

A. S. Koepke, A.-M. Oncescu, J. Henriques, Z. Akata, and
S. Albanie, “Audio retrieval with natural language queries:
A benchmark study,” in IEEE Transactions on Multimedia,
2022.

I. M. Morato and A. Mesaros, “Macs - multi-annotator
captioned soundscapes,” July 2021. [Online]. Available:
https://do1.org/10.5281/zenodo.5114771

“Freesound.” [Online]. Available: https://freesound.org/

M. Honnibal and I. Montani, “spaCy 2: Natural language
understanding with Bloom embeddings, convolutional neural
networks and incremental parsing,” 2017. [Online]. Available:
https://spacy.10/

N. Reimers and I. Gurevych, “Sentence-bert: Sentence
embeddings using siamese bert-networks,” 2019. [Online].
Available: https://arxiv.org/abs/1908.10084

J. Zhang, Y. Zhao, M. Saleh, and P. J. Liu, “Pegasus: Pre-
training with extracted gap-sentences for abstractive summa-
rization,” 2019.

B. Elizalde, S. Deshmukh, M. A. Ismail, and H. Wang, “Clap:
Learning audio concepts from natural language supervision,”
in International Conference on Acoustics, Speech and
Signal Processing. 1EEE, June 2022. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
clap-learning-audio-concepts-from-natural-language- supervision/

S. Chen, Y. Wu, C. Wang, S. Liu, D. Tompkins, Z. Chen, and
F. Wei, “Beats: Audio pre-training with acoustic tokenizers,”
2022. [Online]. Available: https://arxiv.org/abs/2212.09058

S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A.
Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. Wilson,
“Cnn architectures for large-scale audio classification,” 2016.
[Online]. Available: https://arxiv.org/abs/1609.09430

Challenge

https://dcase.community/documents/challenge2022/technical_reports/DCASE2022_Lamort_72_t6b.pdf
https://dcase.community/documents/challenge2022/technical_reports/DCASE2022_Lamort_72_t6b.pdf
https://arxiv.org/abs/2206.08358
https://arxiv.org/abs/1910.09387
https://doi.org/10.5281/zenodo.5114771
https://freesound.org/
https://spacy.io/
https://arxiv.org/abs/1908.10084
https://www.microsoft.com/en-us/research/publication/clap-learning-audio-concepts-from-natural-language-supervision/
https://www.microsoft.com/en-us/research/publication/clap-learning-audio-concepts-from-natural-language-supervision/
https://arxiv.org/abs/2212.09058
https://arxiv.org/abs/1609.09430

	 Introduction
	 Data
	 Architecture
	 Training
	 Submission description
	 Results
	 References

