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ABSTRACT

This report introduces an audio synthesis system designed to tackle
the task of Foley Sound Synthesis in the Detection and Classifica-
tion of Acoustic Scenes and Events (DCASE) 2023 challenge [1].
Our proposed system is an ensemble system composed of a base-
line model and StyleGAN2-ADA [2]. To optimize the system with
limited data without relying on external datasets and pretrained sys-
tems, we propose a two-stage data augmentation strategy. This ap-
proach involves augmenting input waveforms to expand the size of
the training dataset, as well as employing adaptive discriminator
augmentation (ADA) to alleviate the overfitting of the discrimina-
tor and ensure stable training. Experimental results demonstrate
that our proposed ensemble system achieves an FAD (Fréchet Au-
dio Distance) [3] score of 5.84 on the evaluation dataset.

Index Terms— Sound synthesis, generative networks, adaptive
discriminator augmentation

1. INTRODUCTION

In recent years, the field of sound synthesis has seen significant
advancements, especially in the context of text-conditioned sound
generation [4, 5, 6, 7]. Despite these advancements, the synthesis of
realistic and high-quality sounds from limited data remains a chal-
lenge. The field faces the dual obstacles of preserving the quality of
generated sounds while maintaining data efficiency.

This report presents our approach to addressing this problem,
undertaken in the context of the Detection and Classification of
Acoustic Scenes and Events (DCASE) 2023 challenge [8]. Specifi-
cally, we developed a system for conditional Foley sound synthesis
tasked with producing high-quality synthetic sounds corresponding
to seven different classes from a small dataset, consisting of less
than a thousand samples per class.

We leveraged the capabilities of the StyleGAN2-ADA, known
for its data efficiency, and implemented a two-stage data augmen-
tation strategy. This strategy involved not only augmenting input
waveforms to expand the size of the training dataset, but also uti-
lizing adaptive discriminator augmentation (ADA) to prevent the
discriminator from overfitting and ensure stable training.

The performance of our system, characterized by a better FAD
score, surpassed that of the baseline, which highlights the effective-
ness of our approach. Our findings indicate that StyleGAN2-ADA,
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Figure 1: A flowchart of the StyleGAN2-ADA model, featuring
the two-stage data augmentation procedure. The first stage, labeled
as Aug 1, represents the audio augmentation pipeline. The mod-
ifications introduced at this stage are deemed acceptable to ‘leak’
into the learning process of the generator. Conversely, the second
stage, Aug 2, depicts the augmentation process applied to the spec-
trograms. This latter stage of augmentation is designed to avoid
‘leakage’, thereby ensuring that these augmentations do not influ-
ence the generator while preventing the overfitting of the discrimi-
nator.

combined with a thoughtful data augmentation strategy, can serve
as an effective solution for audio synthesis tasks even when faced
with limited data.

The implications of this finding extend beyond the Foley sound
synthesis task, potentially contributing to other audio domains like
music and speech synthesis. Thus, this report offers a valuable con-
tribution to the broader field of audio synthesis, particularly in sce-
narios constrained by data limitations.

2. SYSTEM DESCRIPTION

2.1. Audio Augmentation

We utilized various audio augmentations due to the limited quantity
of available data for the audio generation task. We observed that
the seven classes of training data exhibited unique sound character-
istics. Considering this diversity, we applied distinct augmentation
techniques and specific parameters tailored to each class.

For each class, we applied three distinct types of augmentations,
conducting each augmentation six times. This resulted in a total of
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Figure 2: Schematic representation of the proposed ensemble system. The baseline model is utilized for the generation of the ‘Gun-
Shot’ and ‘Keyboard’ classes. For all other classes, individual StyleGAN2-ADA models, trained separately, are used. SG [class name]
represents the StyleGAN2-ADA model for the corresponding classes.
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Table 1: Augmentation techniques employed for each class. Each class was subjected to three different augmentation techniques, with each
technique applied six times to augment the data.

19 augmentations per class, including the original data and the six
repetitions for each of the three augmentation types (1 + 3 × 6).
Table 1 shows each augmentation pipeline applied to each class.
We used audiomentation1 library for audio augmentation.

The selection of augmentation types and parameters was care-
fully determined to preserve the unique sound characteristics of
each class. This was evaluated by comparing the FAD scores be-
tween the original and augmented data. The objective of this evalu-
ation was to maintain the integrity of each class’s sound character-
istics while expanding the volume of training data.

2.2. StyleGAN2-ADA

Our primary approach centered around the use of StyleGAN2-
ADA, a model tailored for training generative adversarial networks,
especially when data availability is limited. The core concept of
StyleGAN2-ADA lies in its innovative approach to data augmenta-
tion, specifically designed to tackle the challenges of training gener-
ative adversarial networks (GANs) with limited data. This advanced
architecture addresses the problem of overfitting, a common pitfall
when working with sparse datasets.

In standard GAN training, data augmentation is applied to both
the generator and discriminator. However, this often leads to ‘leak-
age’, where the generator learns to mimic the augmentation rather
than the underlying data distribution, resulting in artificial and dis-
torted outputs.

1https://github.com/iver56/audiomentations

StyleGAN2-ADA circumvents this issue with its concept of
non-leaking augmentation. In this setup, data augmentation is
solely applied to the discriminator, effectively increasing the diver-
sity of the data it sees without influencing the data the generator
is trained to reproduce. For example, this augmentation pipeline
includes geometric and color (intensity) transformations of log-
magnitude spectrograms. The generator, nevertheless, is exposed
only to the original data, allowing it to focus on learning the true
underlying data distribution.

Furthermore, StyleGAN2-ADA introduces an adaptive mecha-
nism, adjusting the intensity of augmentation applied to the discrim-
inator based on how well the training process is progressing. This
dynamic adaptation provides a balance between preventing over-
fitting (with high augmentation) and preserving the quality of the
generated samples (with low augmentation). Overall, this adap-
tive, non-leaking augmentation strategy is the key component that
enables StyleGAN2-ADA to effectively learn and generate high-
quality samples, even when trained on limited data.

2.2.1. Class-Specific Model Training

However, we noticed that the version of StyleGAN2-ADA con-
ditioned on classes exhibited lower-than-expected performance.
Therefore, we decided to adopt an alternative strategy that involved
training separate models for each class. This methodology showed
better performance, thus highlighting the benefits of utilizing indi-
vidual models for each class, rather than a single model conditioned

https://github.com/iver56/audiomentations
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DogBark Footstep GunShot Keyboard MovingMotorVehicle Rain SneezeCough Average

StyleGAN2-ADA 6.92 4.45 9.56 7.24 11.53 5.20 1.49 6.63

Baseline (reproduced) 11.20 7.47 7.17 4.14 13.76 12.51 2.65 8.41

Ensemble System 6.92 4.45 7.17 4.14 11.53 5.20 1.49 5.84

Table 2: Comparison of FAD scores of the StyleGAN2-ADA, the baseline, and the ensemble system for each class and the average across
all classes. Given that we selected the best-performing model for each class in the ensemble system, the FAD score for the ensemble system
corresponds to the best FAD score observed for each individual class.

on class ids.

2.2.2. Spectrogram Transformation and Audio Synthesis

In the initial stages, we transformed the waveforms into linear spec-
trograms exhibiting log magnitudes. This transformation was ac-
complished using the short-time Fourier transform (STFT) with the
parameters n fft=512 and hop length=256. Subsequently,
these log-magnitude linear spectrograms were cropped along the
time axis to establish the final data format of [256, 256]. We based
our strategy on the official implementation of StyleGAN2-ADA,
and followed its default training configuration.

During the generative phase, our first step was to sample log-
magnitude linear spectrograms. These were then transformed to
have a linear magnitude scale. Finally, the spectrograms were con-
verted into waveforms using Griffin-Lim [9] algorithm.

2.3. Baseline System

The baseline system is composed of three distinct networks, each
being separately trained using only the training data allowed to
use in Task 7-B. These networks include PixelSNAIL [10], VQ-
VAE [11], and HiFi-GAN [12].

PixelSNAIL, constituting the first network, functions as an au-
toregressive generative model that takes a class id, subsequently
yielding a corresponding discrete time-frequency representation
(DTFR). The second network, VQ-VAE, serves to transform the
compressed DTFR into a Mel-spectrogram. Finally, the third net-
work, HiFi-GAN, converts the Mel-spectrogram into a time-domain
waveform.

2.4. Ensemble System

As instructed in the task description, we constructed an ensemble
system that combines the StyleGAN2-ADA with the baseline sys-
tem. The system with the best FAD score for each sound class is
selected as the representative system for that particular class. The
ensemble system consists of six subsystems, including the baseline
system that generates two classes (GunShot and Keyboard), and the
five different StyleGAN2-ADA systems that generate the other five
classes independently.

3. RESULTS

In this section, we present our experimental results for the Foley
sound synthesis task. We tested our ensemble system, comprising
StyleGAN2-ADA and the baseline model, on the evaluation dataset.

The FAD scores were computed using the official GitHub reposi-
tory. 2

As shown in Table 2, our ensemble system achieved an aver-
age FAD score of 5.84, demonstrating its superior performance over
the baseline model (FAD score of 8.41) and individual StyleGAN2-
ADA models (average FAD score of 6.63). This result highlights
the effectiveness of our ensemble system, particularly when faced
with the challenge of synthesizing high-quality sound from limited
data.

The FAD scores for individual classes in Table 1 show that our
StyleGAN2-ADA model achieved the best FAD scores across al-
most all classes, except for the class ‘GunShot’ and ‘Keyboard.’ For
these two classes, the baseline model outperformed the StyleGAN2-
ADA. This suggests that certain classes might be better suited to
different models, reinforcing the importance of our ensemble ap-
proach.

The success of our system can largely be attributed to our two-
stage data augmentation strategy, which successfully expanded the
size of the training dataset and ensured stable training by prevent-
ing the overfitting of the discriminator. Moreover, the use of indi-
vidual StyleGAN2-ADA models for each class, rather than a single
class-conditioned model, also contributed to our system’s superior
performance.

4. CONCLUSION

Our research aimed to tackle the task of Foley sound synthesis, par-
ticularly focusing on the challenge of working with limited data. In
this context, we put forward an ensemble system combining a base-
line model with StyleGAN2-ADA. The experiments demonstrate
the promising performance of our proposed system.

The results, as reported in the previous section, highlight the
benefits of the ensemble system. Our system achieved a competitive
average FAD score of 5.84 on the DCASE 2023 evaluation dataset.

We also noticed variations in the performance of the different
models across classes. While the StyleGAN2-ADA model achieved
superior FAD scores in most categories, the baseline model outper-
formed in the ‘GunShot’ and ‘Keyboard’ classes. This suggests that
distinct classes might respond better to different models, hence un-
derscoring the value of our ensemble approach in accommodating
these variations.

A major factor contributing to the success of our ensemble sys-
tem was our two-stage data augmentation strategy. This approach
allowed us to effectively expand the training dataset, while also pre-
venting the overfitting of the discriminator and ensuring more stable
training of GAN. The strategy of using individual StyleGAN2-ADA
models for each class, rather than a single class-conditioned model,

2https://github.com/DCASE2023-Task7-Foley-Sound-synthesis/
dcase2023_task7_eval_fad
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also played a significant role in the superior performance of our sys-
tem.

In conclusion, this work has made substantial contributions to
the field of Foley sound synthesis, especially under conditions of
data scarcity. It has highlighted the viability of an ensemble ap-
proach that combines different models for different classes and has
emphasized the importance of effective data augmentation strate-
gies. Our findings offer valuable insights for future work in audio
synthesis, paving the way for improvements in sound quality and
model efficiency, which are particularly crucial when dealing with
scenarios with limited data.
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