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ABSTRACT

The goal of DCASE 2023 Challenge Task 7 is to generate various
sound clips for Foley sound synthesis (FSS) by “category-to-sound”
approach. “Category” is expressed by a single index while cor-
responding “sound” covers diverse and different sound examples.
To generate diverse sounds for a given category, we adopt VITS,
a text-to-speech (TTS) model with variational inference. In addi-
tion, we apply various techniques from speech synthesis including
PhaseAug and Avocodo. Different from TTS models which gen-
erate short pronunciation from phonemes and speaker identity, the
category-to-sound problem requires generating diverse sounds just
from a category index. To compensate for the difference while
maintaining consistency within each audio clip, we heavily mod-
ified the prior encoder to enhance consistency with posterior latent
variables. This introduced additional Gaussian on the prior encoder
which promotes variance within the category. With these modifica-
tions, we propose VIFS, variational inference for end-to-end Foley
sound synthesis, which generates diverse high-quality sounds.

Index Terms— Generative models, DCASE, sound synthesis

1. INTRODUCTION

Foley sound synthesis (FSS) involves the generation of various
sound effects for movies. While FSS could be implemented by text-
to-audio to create detailed text-conditioned sound effects [1, 2], the
focus of the DCASE 2023 Challenge Task 7 is to begin the chal-
lenge with a simpler task, “category-to-sound”, which aims to gen-
erate sounds based on a simple category (or class) index [3, 4]. The
objective is to generate a wide range of sound examples based on
a given category, where each category is represented by a single
index. It is important to note that within each category of sound
events, there exist diverse acoustic characteristics due to the var-
ious entities capable of producing those sound events [5, 6]. For
instance, consider the sound of a dog barking. There are dogs of
different species, each has different sizes and each is grown up in
different environments. Such diverse entities of dogs result in sig-
nificant variations in their barking sounds. As a result, the category-
to-sound problem presents a unique challenge in generating diverse
and distinct sounds solely based on categorical information, while
accounting for the inherent variations within each category.

To address the aforementioned challenge, we draw upon the ad-
vancements in text-to-speech (TTS) which shares similarities with
the category-to-sound problem in that both aim to generate au-
dio output. Since TTS focuses on simulating the pronunciation
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of given input text, it provides valuable insights and methodolo-
gies that can be adapted to the category-to-sound synthesis. Our
approach is based on VITS [7], which showed exceptional perfor-
mance with an end-to-end framework. VITS consists of conditional
variational auto-encoder (cVAE) [8], normalizing flow [9], and gen-
erative adversarial network (GAN) [10]. By incorporating VITS
into the category-to-sound synthesis, we can effectively generate
a wide range of sounds that align with the given categories using
an end-to-end framework, while the baseline [3] requires multiple
stages including auto-regressive model, VQ-VAE structure [11] and
vocoder [12].

However, the category-to-sound problem presents a significant
difference from the TTS approaches. While category-to-sound has
to generate sound clips spanning the whole clip just from a cate-
gory index, TTS focuses on generating short pronunciations based
on phonemes and speaker identities. To consider the difference be-
tween TTS and category-to-sound, we made heavy modifications to
the prior encoder. By adopting the prior encoder to handle longer
sound events while maintaining coherence and fidelity, we effec-
tively tackled the challenges posed by the category-to-sound prob-
lem. By adapting VITS to category-to-sound task, we propose Vari-
ational Inference for Foley sound Synthesis (VIFS). Our proposed
method showcases the ability to generate high-quality sound clips
with diversity, bridging the gap between category information and
realistic audio representation for Foley sound synthesis. The official
implementation code is available on GitHub1.

2. VIFS

VIFS is heavily inspired by TTS studies. The architecture of VIFS
is based on VITS [7], therefore it consists of posterior encoder,
prior encoder, flow, decoder, and discriminators. Furthermore, we
have applied various modifications by referring to previous works
in speech synthesis. Figure 1 illustrates the overall training process.

2.1. Category Embedding

VITS modules, including the posterior encoder, the flow, and the
decoder, are conditioned by the speaker embedding to provide con-
ditions for the specific speaker in the dataset. Instead of the speaker
embedding in VITS, we adopt category embedding for FSS to gen-
erate sounds for specific categories. The dimensionality of the cate-
gory embedding is identical to the hidden dimension of the coupling
layers, which is 192. Similar to the speaker embedding in VITS, the

1https://github.com/junjun3518/vifs
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Figure 1: Overview of training procedure of VIFS.

category embedding conditions the posterior encoder, the decoder,
and the flow. Furthermore, the category embedding serves as an in-
put to the prior encoder, and its dimensionality is expanded to 344 to
accommodate the time length of the latent variables from the prior
encoder. Considering that prior encoder in VITS takes phonemes
as input, category embedding in VIFS replaces pronunciation infor-
mation as well.

2.2. Posterior Encoder and Flow

We used the architecture of the posterior encoder and flow of
VITS without modification. However, FSS do not require mono-
tonic alignment search (MAS), which is used for phoneme duration
search in TTS. Therefore, VIFS omitted MAS and just calculates
Kullback–Leibler (KL) divergence without MAS and length regu-
lator for prior latent variables.

2.3. Prior Encoder

Different from TTS, the challenge requires to synthesize diverse
sounds solely based on a single category index. Unlike phonemes,
which typically have a duration of less than 100 million seconds,
sound events span a much longer duration. For DCASE 2023 Chal-
lenge Task 7, the sound events can reach a maximum length of
4 seconds. To address this distinction and consider the different
requirements of category-based sound synthesis, careful modifica-
tions need to be made to the prior encoder which encodes category
index into various sound representations.

From the early experiments which did not consider clip-level
consistency and were only conditioned by time-expanded category
embedding, the model generated sounds often containing different
events and abrupt ends, compromising naturalness. For example,
generated dog bark sound often involved barking from other dogs
or even the echo of a gunshot, which corresponds to different cat-
egory. Some sounds abruptly ended in the middle of events and
restarted. To address these problems, we introduce additional con-
ditions for the prior encoder including category embedding, learn-
able positional embedding, and latent conditioning.

First, to generate sounds with clip-level consistency, the prior
encoder needs to model latent variables considering temporal po-
sition. Thus, we add learnable positional embedding along time
axis to expanded category embedding for conditioning positional
information. The learnable positional embedding has a fixed di-
mension, which has an identical dimension with expanded category
embedding. In addition, we apply large-kernel frame prior networks
[13] to give more positional information to the model. However,
we observed that while position information improves synthesized
sounds’ consistency within each clip, it lowers the diversity within
generated dataset.

Second, to enhance diversity, we tried adding time-expanded
Gaussian noise to expanded category embedding. However, just
adding random Gaussian noise significantly increases KL diver-
gence between flow outputs and prior latent variables which states
given data is not modeled well with those structures. Therefore, we
give another condition from the posterior latent variables to the prior
encoder instead. The posterior latent variables z are compressed to
a single vector by self-attentive pooling (SAP) [14] and expanded
in time dimension to match the size of category embedding. During
the inference, Gaussian noise is sampled for input instead of SAP
latent variables since we would not have posterior latent during in-
ference. To enforce the compressed vectors’ distribution to standard
normal Gaussian, we add L2 loss for the mean and standard devia-
tion of the compressed vectors in a batch.

2.4. GAN

From the original GAN architecture of VITS which was adopted
from HiFi-GAN [12], we modified several features following Lee
et al. [15]. This reflects the methodologies of Avocodo [16] which
removes unintended artifacts such as aliasing and imaging artifacts.
The resultant GAN architecture is composed of the decoder and the
discriminator in Figure 1. In addition, we also adopt PhaseAug [17]
for adversarial networks to prevent periodicity artifacts of the non-
autoregressive vocoder structure in VIFS.

2.5. Implementation Details

Without the prior encoder, other details are identical to those of
VITS [7]. The frame prior network consists of 6 residual layers,
each of which incorporates leaky ReLU using a negative slope 0.2,
Conv1D with a kernel size of 35, and a residual connection. SAP
calculates computes attention using the mean of the posterior latent
variables. 4 seconds length of sounds are corresponding to spectro-
gram length 344 by the short-time Fourier transform with size 1024
and hop size 256. This length serves as the expansion size for the
category embedding and Gaussian input to the prior encoder. The
model training was performed using 4 V100 GPUs.

3. EXPERIMENTS

3.1. Dataset

We only use given dataset from the DCASE 2023 Challenge Task 7
[3], which is sampled from UrbanSound8K [18], FSD50K [19], and
BBC Sound Effects2. This dataset consists of 7 distinct categories
and total 4,850 files as illustrated in Table 1. All files within the
dataset are mono recordings with a bit depth of 16 bits, a sampling
rate of 22,050 Hz, and a duration of 4 seconds.

2https://sound-effects.bbcrewind.co.uk/
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Table 1: Number of files on each category.

Class ID Category Number of clips

0 DogBark 617
1 Footstep 703
2 GunShot 777
3 Keyboard 800
4 MovingMotorVehicle 581
5 Rain 741
6 Sneeze/Cough 631

3.2. Data Length

The training dataset provided has been zero-padded to align all sam-
ples to a duration of 4 seconds [3]. To consider the adverse effect
of zero padding applied to the training dataset, we found the true
data length by removing the zero padding and showed a histogram
plots of each category on Figure 2. Total number of audio clips
corresponding to each category is shown in Table 1 for the refer-
ence. From the histograms, we can observe that more than half of
the sound clips in training dataset are 4 seconds long before zero
padding. These would be mostly audio clips trimmed at 4 seconds,
though they were longer at first. From the histogram, we can ob-
serve that for categories of keyboard, moving motor vehicle and
rain, the clips those are 4 seconds long are almost or more than
90%. It is due to their characteristics that they usually occur longer
than 4 seconds. On the other hand, categories such as dog bark, gun
shot and sneeze & cough, the clips with 4 seconds long are less than
70%. These sound events usually happen shortly. Nonetheless, to-
tal 76.1% of training dataset is composed of sound clips 4 seconds
long. Also, among the files those are 4 second-long, there are noise
from other sound sources at front and behind of the actual sound
events corresponding to the category. Therefore, we concluded that
taking account of the zero padded would not significantly improve
the model and we rather tried to exclude the effect of zeros padded
or other noises within the sound clips within the prior encoder ar-
chitecture as discussed in Section 2.3.

3.3. Evaluation Metric

We used Fréchet Audio Distance (FAD) to evaluate traind model
[20]. FAD is an object evaluation metric that measures the differ-
ence between distributions between the training dataset and gener-
ated dataset for each categories. The distributions are composed of
the representations of audio clips, extracted by inserting the audio
clips to a VGGish model trained using AudioSet [21]. Since we per-
form FAD on the distributions of generated dataset and evaluation
dataset, lower FAD implies that generated dataset is closer to eval-
uation dataset thus better the performance of FSS. While FAD is
the best option to perform objective evaluation on sound generative
model, we should note the limitations of FAD: the trained VGGish
model is not guaranteed to sufficiently working well on classifica-
tion. In addition, whether it is good classifier or not, the represen-
tation extracted from the VGGish model might not “represent” the
audio clips well too. With these limitations, subjective tests are re-
quired to evaluate quality of generated models more thoroughly.

Figure 2: Histograms of data lengths after removing zero padding.

3.4. Checkpoints and Noise Scales

We used FAD to sort out the best models for each category, and
chose models with four checkpoints and different noise scales. The
noise scale is a factor applied to obtain the prior representation,
and it is multiplied with Gaussian random vectors. A higher noise
scale introduces more variance in the generated sound clips, but
it may also lead to the generation of clips that significantly differ
from the samples in the training dataset. Conversely, a lower noise
scale produces generated sound clips that are closer to the training
dataset samples but with reduced variance. To determine the op-
timal settings, we selected six checkpoints corresponding to 270k,
290k, 310k, 330k, 350k, and 370k steps. Among these checkpoints,
we identified that four models achieve the best FAD for specific
categories. We then fine-tuned the noise scale for each model to
further optimize the category-wise FAD. We first conducted tests
using noise scales ranging from 0.25 to 1.5 with an interval of 0.25,
followed by additional tests with noise scales from 0.5 to 1.0 with
an interval of 0.1.

4. RESULTS AND DISCUSSIONS

4.1. Results

Table 2 shows category-wise and average FAD on the baseline, six
VIFS models and an ensemble VIFS model. The six VIFS models
are chosen by procedure described on Section 3.4, and each rep-
resents model checkpoints and noise scales corresponding to each
category’s best category-wise FAD, as shown in Table 2 on third to
eighth columns. The best FAD for each category are highlighted
as bold. To further optimize the best model, we made an ensemble
model by selecting the best model for each category, as indicated in
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Table 2: Category-wise FAD with chosen checkpoints and noise scales. A lower FAD value indicates a better alignment between the
distribution of the generated audio clips and the real audio clips in each category.

baseline VIFS ensemble

# submission - - 3 - - 2 1 4

# step - 270k 270k 270k 290k 310k 330k -
noise scale - 0.6 0.7 1.0 0.8 0.6 0.8 -

dog bark 13.411 12.009 12.184 11.489 11.227 10.388 8.805 8.805
footstep 8.109 7.461 6.968 6.638 6.889 7.373 7.290 6.638
gunshot 7.951 7.535 7.233 12.440 9.860 8.091 9.392 7.233
keyboard 5.230 10.359 9.191 7.643 7.634 9.699 6.387 6.387
moving motor vehicle 16.108 34.429 34.880 37.516 39.905 37.056 37.818 34.429
rain 13.337 7.200 6.703 7.184 7.201 6.636 7.899 6.636
sneeze & cough 3.770 9.505 9.674 9.656 9.283 9.744 11.916 9.283

average w/o vehicle 8.635 9.007 8.659 9.175 8.682 8.655 8.615 7.497
average 9.702 12.638 12.405 13.224 13.142 12.712 12.787 11.344

Figure 3: Cosine similarity between trained category embedding.
Upper triangular region is excluded due to the symmetry.

the right column of Table 2. For the challenge submission, we se-
lected three individual models and the ensemble model, with their
corresponding indices provided in Table 2 in the second row.

From the results, VIFS outperformed the baseline for the dog
bark, footstep, gunshot, and rain categories. However, VIFS still re-
quires improvement to surpass the baseline for the keyboard, mov-
ing motor vehicle, and sneeze & cough categories. The FAD for the
moving motor vehicle category was exceptionally high, causing the
averaged FAD of VIFS to fall short of surpassing the baseline. How-
ever, when we considered the moving motor vehicle category as an
outlier and evaluated the averaged FAD without it, we observed that
the ensemble model outperformed the baseline by 13.2%.

4.2. Category Embeddings

We present the cosine similarities between the trained category em-
beddings in Figure 3. While we discuss four checkpoints in this
study, we observe that their category embeddings are nearly identi-

cal, so we only display the embeddings corresponding to the check-
point at 270k steps. Considering the symmetry between upper and
lower triangle, we exclude the upper triangle in the visualization for
brevity. Additionally, to illustrate the contrast from the cosine simi-
larity of 1, we include the diagonal elements. As depicted in the Fig-
ure 3, it is evident that the embeddings are weakly correlated with
each other. The largest cosine similarity values are 0.261, 0.229,
and 0.224, corresponding to the pairs of dog bark with sneeze &
cough, moving motor vehicle with rain, and dog bark with gun shot,
respectively. These values are sufficiently small, indicating that the
category embeddings have been effectively trained to differentiate
between the different sound categories.

An interesting observation to discuss is that relatively higher
cosine similarity values follow the acoustic characteristics of the
sound event categories. Dog bark, gun shot, and sneeze & cough
are all impulsive sounds, characterized by accentuated early parts of
the sound waveform. They may occur once or in successive repeats.
Similarly, moving motor vehicle and rain share similarities in terms
of their stationary nature, where the spectral characteristics of these
sounds rarely or slowly change over time [22]. Furthermore, both
categories exhibit spectral characteristics that span a wide frequency
range. In the earlier stages of the checkpoints, these categories ap-
pear to be mixed with each other in the generated sound clips. For
instance, a sample of generated sneeze & cough sound contained
gun shots and dog barking sounds during successive repeats. Simi-
larly, a sample of moving motor vehicle sound resembled the sound
of rain.

5. CONCLUSION

In this work, we propose VIFS, an end-to-end variational inference
for FSS. With our heavily modified prior encoder, we could generate
consistent sounds for each inference with high quality. In addition,
techniques from speech synthesis increase the perceptual quality of
synthesized sounds without multiple stages of training. As a re-
sult, we improved FAD of four categories, dog bark, footstep, gun
shot and rain when compared to the baseline. While FAD for other
categories are still behind the baseline, we would need to perform
subjective test to compare the quality of generated sound.



Detection and Classification of Acoustic Scenes and Events 2023 Challenge

6. REFERENCES

[1] F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez,
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