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ABSTRACT

In this technical report, we present our submissions for DCASE
2023 challenge task4a. We mainly study how to fine-tune patchout
fast spectrogram transformer (PaSST) for sound event detection
task (PaSST-SED). Firstly, we fine-tune PaSST with weakly-labeled
DESED dataset. Task-aware fine-tuning (TAFT) and self-distillated
mean teacher (SdMT) are used as fine-tuning strategies, TAFT
helps exploit both local and semantic information from PaSST and
SdMT helps train a robust model with soft knowledge distillation.
Secondly, we fine-tune PaSST with pseudo-labeled DESED with
pseudo labels from DCASE2022 rank1, mix-up is used to mix the
audios with true or pseudo labels. Besides, when test with PaSST-
SED model, slide window clipping (SWC) is used to compensate
the temporal resolution loss of PaSST feature. We also evalu-
ate post-processing methods including median-filtering and max-
filtering. Experiments on the DCASE2023 task4a validation dataset
demonstrate the effectiveness of the techniques used in our sys-
tems. Specifically, our systems achieve the best PSDS1/PSDS2 of
0.5624/0.8990.

1. INTRODUCTION

Sound event detection (SED) is the task to detect both the onset
and offset of a sound event and classify its categories. It has wide
applications for real-world systems including smart home devices
[1], and automatic surveillance [2]. Since DCASE2018, due to
the difficulty of manually annotating sound events, only a small
quantity of weakly-labeled data is available, to utilize large-scale
unlabeled data, semi-supervised learning (SSL) based SED meth-
ods have been explored in the past. Mean teacher (MT) [3] has
built a strong SSL baseline, and other SSL methods such as inter-
polation consistency training (ICT) [4], shift consistency training
(SCT) [5], and confident mean teacher (CMT) [6] have been pro-
posed to exploit unlabeled data efficiently. From DCASE2019 to
DCASE2021 [7, 8], synthetic data with accurate time-stamps have
been proposed and get larger and larger, some methods untiliz-
ing the strongly-labeled data achieved state-of-the-art performance
[9, 10, 11]. Considering the domain gap between synthetic and real
audio data, [12, 13] explore the domain adaptation methods to ex-
ploit synthetic strong-labeled data efficiently.

In DCASE2022, several researches on exploiting external
large-scale weakly-labeled AudioSet [14] data have greatly im-
proved the detection performance of SED systems. For example, the
forward-backward CRNN (FB-CRNN) and Bi-directional CRNN
(Bi-CRNN) [15] are firstly pretrained on AudioSet, then they are
fine-tuned in a self-training manner, which achieves the first rank

in DCASE2022 task4. Xiao [16] study how to fine-tune pretrained
AT models such as audio neural network (PANN) [17] and audio
spectrogram transformer (AST) [18]. In our previous work AST-
SED [19], the frequency-wise transformer encoder (FTE) and local
GRU decoder (LGD) are proposed to effectively fine-tune AST for
SED, it helps to extract a better temporal sequence, and produces
a high-temporal-resolution representation, which is beneficial for
SED task. AST-SED shows that pretrained AST model can be well
transferred to SED task with no need to redesign or retrain the AST
model.

In this year’s challenge (i.e., DCASE2023), the main research
is also how to exploit large-scale external data. We follow our previ-
ous work [19], and further study how to transfer Patchout faSt Spec-
trogram Transformer (PaSST) [20] model to sound event detection
(SED) task. There are two main points to our work, firstly we study
how to fine-tune PaSST with weakly-labeled DESED [7] dataset,
and we apply the task-aware fine-tuning (TAFT) and self-distillated
mean teacher (SdMT) to exploit the pretrained PaSST adequately.
Secondly, we study how to fine-tune PaSST with pseudo-labeled
DESED with pseudo labels from [15], we mix the audios with true
or pseudo label to make the model not overfit to the data with noisy
pseudo labels.

2. METHODS

2.1. Fine-tune PaSST with weakly-labeled DESED

2.1.1. Task-aware fine-tuning

As shown in Figure 1(a), in the task-aware fine-tuning (TAFT),
given the output of PaSST, we use two task-adapters including
SED-adapter and AT-adapter to transfer PaSST for SED or AT task
respectively. As shown in Fiture 1(b), the SED-adapter consists
of: (1) frequency-wise average pooling (FAP) to extract a frame-
level representation, (2) local GRU decoder (LGD) [19] to pro-
duce a high-temporal-resolution representation, (3) SED classifier
to produce frame-level SED output. The AT-adapter consists of:
(1) Global average pooling (GAP) to extract a clip-level represen-
tation, (2) AT classifier to produce a clip-level output. The SED-
adatper is attached to shallower layer to exploit local information
while AT-adatper is attached to deeper layer to exploit semantic in-
formation. The AT-adatpers helps produce more accurate clip-level
prediction to guide the SED-adapter learning. The loss function of
SED-adatper is defined as follows,

LSED = Lsed
BCE,frame + λsed

1 Lsed
BCE,clip

+ λsed
2 Lsed

MSE,frame + λsed
3 Lsed

MSE,clip

(1)
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(a) Task-aware fine-tuning (b) Task-aware adapter

Figure 1: Task-aware fine-tuning.

where Lsed
BCE,frame denotes frame-level classification BCE loss for

strongly-labeled data, Lsed
BCE,clip denotes clip-level classification

BCE loss for weakly-labeled data, Lsed
MSE,frame and Lsed

MSE,clip

denote frame-level and clip-level teacher-student consistency MSE
loss for unlabeled data respectively. The weight λsed

1 , λsed
2 , λsed

3 is
set to 0.5, 2, 2 respectively. The clip-level output yclip is a weighted
average from frame-level output yframe with linear-softmax pool-
ing [21],

yclip =
T∑

i=0
y2
frame,i/

T∑
i=0

yframe,i (2)

where i denotes th ith frame. The loss fuction of AT-adatper is
defined as follows,

LAT = Lat
BCE,clip + λat

1 Lat
MSE,clip (3)

where the weight λat
1 is set to 1, Lat

BCE,clip denotes classification
BCE loss for weakly-labeled data and Lat

MSE,clip denotes clip-level
teacher-student consistency MSE loss for unlabeled data. Total loss
is as follows,

Ltask−aware = LSED + λATLAT (4)

where LSED and LAT are same as Eqn. (1) and Eqn. (3) respec-
tively, λAT is set to 2.

2.1.2. Self-distillated mean teacher

As the timestamps are hard to determined, the strong-label in the
training data may be noisy, soft label from teacher may contain
more information and deserved to be explored further, we propose
self-distillated mean teacher (SdMT) to train a robust vice-student
model with knowledge distillation (KD). As shown in Figure 2,
same as mean teacher, the main-student is trained with labeled data,
the teacher model is an EMA from main-student model, the teacher
model guide the main-student learning with consistency regulariza-
tion for unlabeled data, we introduce a vice-student, and distill the
knowledge from teacher to vice-student with soft KD. The KD loss
is as follows,

Lkd,soft =MSE(δ(zs,frame), δ(zt,frame/τ))

+ λclipMSE(δ(zs,clip), δ(zt,clip/τ))
(5)

where zs,frame, zt,frame, zs,clip, zt,clip denotes student frame-
level logits, teacher frame-level logits, student clip-level logits,
teacher clip-level logits respectively, δ denotes sigmoid activation
function, and the temperature τ is set to 1.

Figure 2: Self-distillated mean teacher (SdMT).

2.2. Fine-tune PaSST with pseudo-labeled DESED

When training with pseudo-labeled DESED, we do not apply mean
teacher, and the model is trained in a supervised learning manner.
However, as the pseudo label (PL) is noisy, we apply mix-up [22]
to mix the audios in a training batch which contains true or pseudo
labels, which may reduce the overfitting to noisy labels. The loss
fuction is as follows,

LPL = LBCE,frame + λclip ∗ LBCE,clip (6)

where LBCE,frame, LBCE,clip denotes frame-level and clip-level
BCE loss respectively. λclip is set to 0.5.

2.3. Post processing

2.3.1. Median filtering and Max filtering

Median filtering (MedianF) has been explored in the past chal-
lenges, window size are tuned individually for each event class to
achieving the best event-based F1-score [15, 23]. Median filtering
helps achieve better frame-level detection performance. We also
propose to use Max filtering (MaxF) to achieve better segment-level
detection performance. Specifically, we enlarge the window size
with a ratio of 10, then we apply max filtering.

2.3.2. Slide window clipping

While the LGD block helps produce high-temporal resolution fea-
tures in the training phase, we let the PaSST model producing high
temporal resolution features itself in the test phase which may help
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LGD produce better representations, specifically, when test, the in-
put spectrogram is clipped to many sub-spectrograms along tempo-
ral axis with a window size and stride, they are feed to PaSST and
further aggregated after NNI, the GRU helps decode better repre-
sentations with the slide window clipping (SWC) operations. The
window size is 516 and stride is 32.

3. EXPERIMENTS SETUP

3.1. Dataset

Experiments is conducted on DCASE2023 task4 development set
(DESED) [7]. The training dataset contains: 1578 weakly-labeled
clips, 3470 strongly-labeled clips, 10000 synthetic-strongly-labeled
clips, and 14412 unlabeled in-domain clips. The validation dataset
consists of 1168 strongly-labeled clips.

3.2. Feature Extraction

A 32kHz audio input waveform is first converted into 128-
dimensional log Mel spectrogram features with a window size of
25ms and frame shift of 10ms. As a result, each 10-second sound
clip is transformed into a 2D time-frequency representation with a
size of (1000×128), then it shares same normalization as [24]. Fre-
quency mask [25] and Mix-up are used for data augmentation.

3.3. Experimental Settiongs

The model is trained over 20 epochs with the AdamW [26] opti-
mizer, and a ratio of 1:1:2:2 for strong, synthetic-strong, weak and
unlabeled data is used for each batch. Learning rates (lr) are set to
5e-6, 1e-4 for pre-trained PaSST and the task-aware adapters. Dur-
ing training, the lr is constant for the first 10 epochs, then reduced
with exponential-down schedule to 5e-7,1e-5 for the last 10 epochs.
When using SdMT, the main-student and teacher are firstly trained
over 20 epochs, then the vice-student is trained over another 20
epochs with the aforementioned settings. True Polyphonic Sound
detection Score (PSDS) [27] is used to evaluate fine-grained SED
performance, the scenario1 (PSDS1) is used to evaluate the fine-
grained performance while scenario2 (PSDS2) is used to evaluate
the coarse-grained performance.

4. RESULTS

• Ensemble1: an ensemble of 6 single1 models (our submitted
system1).

• Ensemble2: an ensemble of 4 single2 models (our submitted
system2).

• Ensemble3: an ensemble of 4 single models, trained with
TAFT, Asymetrical focal loss (AFL), Mixup, SW and Medi-
anF (our submitted system3).

• Ensemble4: replacing the MeidanF with MaxF in Ensemble3
(our submitted system4).

• Single1: we term this model as TAFT+SdMT+SWC+MedianF
which denotes the task-aware fine-tuning (TAFT), self-
distillated mean-teacher (SdMT), Slide window clipping (SW)
and median filtering are used (our submitted system5) .

• Single2: we term this model as PL+Mixup+SWC+MedianF
which denotes the pseudo labeling (PL), Mixup, Slide window

Table 1: Submitted systems’ performances on validation set.
Model PSDS1 PSDS2
Baseline 0.5000 0.7620
Single1 0.5550 0.7914
Single2 0.5524 0.7947
Single3 0.4512 0.6622
Ensemble1 0.5624 0.7953
Ensemble2 0.5542 0.7990
Ensemble3 0.5585 0.7984
Ensemble4 0.0930 0.8990

clipping (SWC) and median filtering are used (our submitted
system6).

• Single3: we term this model as SKCRNN, where the model
structure is same as our DCASE2021 submission [28] and no
external data is used to train this model. Training settings are
same as [29] (our submitted system7).

As shown in Table 1, With TAFT and SdMT, the model (single1)
achieves 0.5550 PSDS1 and 0.7914 PSDS2. With pseudo labels,
the model (single2) achieves competitive results of 0.5524 PSDS1
and 0.7947 PSDS2. Ensemble model achieves higher results. Af-
ter using MaxFiltering (Ensemble4), our model achieves the best
PSDS2 of 0.8990 which shows the PSDS2 reflect the segment-level
performance.
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