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ABSTRACT 

This report outlines our submission for DCASE2023 Task1, 

which focuses on Low Complexity Acoustic Scene Classification. 

To meet this requirement, we implemented the Depthwise Sepa-

rable CNN method to construct our model. This approach signif-

icantly reduces model size while improving accuracy. Addition-

ally, we applied SpecAugment and mixup as data augmentation 

techniques. To further enhance our model's performance, we em-

ployed Knowledge Distillation, teaching the submission model 

from larger models. Overall, these techniques enable us to achieve 

better results on the task. 

Index Terms— Depthwise Separable CNN, SpecAug-

ment, Mixup, Knowledge Distillation 

1. INTRODUCTION 

The task1 of the DCASE2023 challenge is to classify a test record-

ing into one of the predefined ten acoustic scene classes [1]. This 

targets acoustic scene classification with devices with low compu-

tational and memory allowance, which impose certain limits on 

the model complexity, such as the model’s number of parameters 

and the multiply-accumulate operations count. In addition to low-

complexity, the aim is generalization across a number of different 

devices. For this purpose, the task will use audio data recorded and 

simulated with a variety of devices. 

        The Depthwise Separable CNN [6][7] is a type of Convolu-

tional Neural Network architecture that reduces the computational 

complexity of traditional CNNs. Due to its efficiency and effec-

tiveness, it has demonstrated promising results in a variety of ap-

plications, making it an ideal choice for the current competition's 

requirements. Additionally, we utilized Knowledge Distillation 

[9], a technique in machine learning that enables the transfer of 

knowledge from a large, complex model (known as the teacher 

model) to a smaller, simpler model (known as the student model). 

By integrating these techniques, we were able to create a powerful 

and efficient model for the task. 

2. FEATURE EXTRACTION AND DATA 

AUGMENTATION 

2.1. Reassembling Audios 

For this task, we utilized the TAU Urban Acoustic Scenes 2022 

Mobile development dataset [2], which contains the same content 

as the TAU Urban Acoustic Scenes 2020 Mobile development da-

taset but with audio files that are only 1 second in length. As a 

result, there are ten times more files in the 2022 version. To create 

a more informative dataset, we reassembled the 10-second dataset 

from the 1-second dataset. During model training, we randomly 

cropped the 10-second audio into 1-second audio segments as part 

of our feature extraction process. This approach enabled us to ex-

tract relevant acoustic features from the audio dataset, ultimately 

leading to improved model performance. 

2.2. Feature Extraction 

To extract relevant features from the 1-second audio with a sam-

pling rate of 44.1kHz, we utilized Log-mel Energies Features [5] 

as the input for our model. We employed the Short Time Fourier 

Transform with a hamming window size of 3528 and overlap of 

25% to extract these features. Additionally, we used 4096 FFT 

points and 256 log-mel filter banks to enhance the quality of our 

feature extraction process. As a result, the shape of our model's 

input feature was 1 x 256 x 51, which adequately captured the 

relevant acoustic attributes of the audio dataset. 

2.3. SpecAugment and Mixup 

To enhance the quality and robustness of our model, we employed 

the SpecAugment [3] technique, which comprises two primary op-

erations: frequency masking and time masking. In the frequency 

masking operation, we randomly masked out frequency bands in 

the spectrogram by setting them to zero, simulating missing data 

or background noise. Similarly, in the time masking operation, we 

randomly masked out contiguous time segments in the spectro-

gram by setting them to zero, further simulating missing data. In 

training, the size of both frequency and time masking was ran-

domly chosen to be between 0 and 10. By applying these masking 

operations in both the frequency and time domains, we were able 

to increase the diversity of our training data and improve our mod-

el's ability to generalize to new and unseen data.  
        Mixup [4] is a widely used data augmentation technique in 

classification models. This technique involves taking two exam-

ples with their corresponding labels and generating a new exam-

ple and label by randomly combining the two examples and their 

labels using a weighted sum. The weight of each example is de-

termined by a random value lambda, which is sampled from a beta 

distribution with parameters (0.5, 0.5) in training. With mixup, the 

resulting augmented training set is a combination of original and 

synthetic data that better captures the underlying distribution of 

the data, enhancing the model's ability to generalize to new data.  
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3. ARCHITECTURES 

3.1. Model Architecture 

The model architecture is based on a Convolutional Neural Net-

work (CNN). As shown in Table 1, the model consists of several 

parts, including Input, DW1, DW2, DW3, and Output. The Input 

layer contains a Convolution layer with a 7x7 kernel. The DW1 

layer contains a DwBlock and a MaxPooling layer with a 5x5 ker-

nel. The DW2 layer starts with a Convolution layer with a 5x5 

kernel, followed by a DwBlock. The DW3 layer is similar to DW1 

but with a MaxPooling layer with a kernel size of 10 x 4. Finally, 

the Output layer consists of a flatten layer and 2 Linear Layers. 

When the hidden size is set to 18, the number of parameters is 

31.26K (maximum is 32K when using float32), and the number of 

MMAC (million multiply-accumulate operations) is 29.6 (maxi-

mum is 30).   

 

Table 1: Model Architecture 

3.2. DwBlock Architecture 

As illustrated in Figure 1, the DwBlock architecture comprises 

four main components: BatchNorm [11], ReLU activation, Depth-

wise Convolution, Pointwise Convolution, and a Residual Con-

nection [8] that adds the input features to the output features. The 

Depthwise Convolution [12] operation is a computationally effi-

cient variant of the standard convolution operation, which reduces 

the number of parameters and computations required by the net-

work. This operation applies a single filter to each input channel 

separately, rather than using a different filter for each combination 

of input and output channels. The Residual Connection helps to 

mitigate the vanishing gradient problem by allowing the gradient 

to be propagated more easily through the network. This connection 

adds the input features to the output features, thereby creating a 

shortcut path for gradient flow. The BatchNorm and ReLU activa-

tion functions are commonly used to normalize and scale the out-

put of the Depthwise Convolution operation and introduce non-

linearity into the network. 

3.3. Knowledge Distillation 

The Knowledge Distillation [9] process involves using a fused 

teacher model to distill knowledge into a student model. Four 

larger teacher models are trained with different configurations, 

each having the same architecture as the student model but with a 

much larger size of 2.3M parameters and hidden size set to 256. 

The ensemble method of averaging is then applied to fuse the out-

puts of the four teacher models and create a better fused model. 

The soft targets are generated by the fused teacher model, which 

are used to train the student model using a weighted sum of soft 

loss and hard loss. The soft loss measures the difference between 

the student model's predicted probabilities and the probabilities 

generated by the fused teacher model, while the hard loss 

measures the difference between the student model's predicted la-

bels and the true labels. 

 

4. EXPERIMENT 

To train and test our model, we used the official setup of the de-

velopment dataset. Initially, we trained four different teacher 

models for 200 epochs using the Adam optimizer with a batch size 

of 64. The learning rate started from 0.01 and gradually decreased 

as the epoch increased. We then applied the knowledge distilla-

tion method to train the student model. We used a temperature of 

2 and set the weighting of the soft loss to 0.5. In the KD frame-

work, we used the Adam [10] optimizer with the same configura-

tions as teacher training, but we increased the training epoch to 

600. Table 2 shows the performance of our model, which achieved 

higher accuracy compared to the baseline model. The training pa-

rameters such as learning rate, batch size, and number of epochs 

were carefully tuned to optimize the accuracy of the model. 

 

Model Parameters Accuracy 

Baseline 46,512 42.9% 

Teacher1 2,318,678 58.7% 

Teacher2 2,318,678 59.0% 

Teacher3 2,318,678 58.9% 

Teacher4 2,318,678 58.6% 

Student w/o KD 31,260 51.3% 

Student 

(submission) 

31,260 54.9% 

Table 2: Results for development dataset 

 Architecture Parameters Output Shape 

Input Conv 900 (18, 256, 51) 

DW1 
DwBlock 

MaxPool2d 

1044 

- 

(18, 256, 51) 

(18, 51, 10) 

DW2 
Conv 

DwBlock 

8118 

1044 

(18, 51, 10) 

(18, 51, 10) 

DW3 
DwBlock 

MaxPool2d 

1044 

- 

(18, 51, 10) 

(18, 5, 2) 

Output 

Flatten 

Linear 

Linear 

- 

18100 

1010 

180, 

100, 

10, 

Figure 1: The architecture of Dwblock 
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5. CONCLUSION 

In this report, we present our model for the task of Low-Complex-

ity Acoustic Scene Classification. Our model takes log-mel ener-

gies as input and incorporates data augmentation techniques such 

as SpecAugment and mixup to enhance its robustness. To reduce 

the complexity of our model, we use a Depthwise separable CNN 

architecture. Additionally, we employ the knowledge distillation 

technique to transfer knowledge from larger teacher models to our 

smaller student model, which leads to improved performance. 

Overall, our approach shows promising results in achieving high 

accuracy while maintaining low complexity. 
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