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ABSTRACT

In this technical report, we describe our submission system for
DCASE 2023 Task4: sound event detection in domestic environ-
ments. We propose FDY CRNN systems using BEATs embeddings.
The system adapted late-fusion to concate the feature maps from
Frequency Dynamic Convolution and the frame-level embeddings
from BEATSs. After that, a classification layer produces the predic-
tion from the late-fusion features. The system is trained by the mean
teacher framework. We utilize Asymmetric Focal Loss as the super-
vised loss to alleviate the imbalance between positive and negative
samples. Furthermore, we apply two-stage mean teacher training to
utilize training data adequateately. Compared to PSDS-scenario 1
of 50% and PSDS-scenario 2 of 76.2% of the baseline system using
BEATSs embeddings. Our FDY CRNN system achieves 50.1% and
79.8%, respectively. The ensemble of the FDY CRNN system fur-
ther improves the PSDS-scenario 1 to 52.5% and the PSDS-scenario
2 to 80.4%.

Index Terms— BEATSs, FDY-CRNN, Selective kernel unit

1. INTRODUCTION

In this technical report, we describe our submission systems for De-
tection and Classification of Acoustic Scenes and Events (DCASE)
2023 Task 4 A. In this year, a new baseline system [1] using pre-
trained embeddings extracted from Bidirectional Encoder represen-
tation from Audio Transformers (BEATs) [2] is proposed. BEATs
is a transformer-based model trained on the large-scale Audioset
[3] dataset. The model is the state-of-the-art system for audio clas-
sification tasks. As the output of BEATS, the frame-level embed-
ding contains high-level classification information along temporal
dimension, which is useful for SED systems. The new baseline
system takes fusion features, which is the concatenation of frame-
level embedding extracted from BEATS and feature maps produced
by CNN, as input. Due to the temporal resolution of the frame-level
embedding is finer, it needs to be downsampled to match the feature
maps. There are three different downsampling methods, including
average pooling, interpolation and RNN encoding. By fusing with
the embeddings of BEATS, the newly baseline system has a huge
progress in performance. Based on the baseline, we proposed our
improvements to the architecture and training process. Firstly, we

used frequency dynamic convolution [4] and selective kernel con-
volution [5] to implement two different SED systems, called FDY-
CRNN and VGGSK respectively. The former improves feature ex-
traction ability in the frequency domain, and the latter uses different
kernel sizes with an attention mechanism to enhance discrimination
between different event classes. Secondly, we applied noisy stu-
dent [6], random consistency training [7] and asymmetric focal loss
[8] during training. Thirdly, we employ an adaptive median filter
to smooth strong label predictions. Our improved system achieves
true PSDS-scenario 1 of 50.1% and true PSDS-scenario 2 of 79.8%,
which outperform the baseline system of 50% and 76.4%. Further-
more, we ensemble multiple systems with different architectures
and training methods. The ensemble system further increases true
PSDS-1 to 52.5% and true PSDS-2 to 80.4%.

2. METHODS

2.1. Model architectures

We propose the VGGSK structure, consisting of selective kernel,
residual structure [9] and Visual Geometry Group(VGG) convolu-
tion block [10]. The selective kernel(SK) is a dynamic selection
mechanism that dynamically adjusts the size of the receptive field
of each of the neurons in a CNN network.The residual structure is
designed to solve the network degradation problems that can oc-
cur in deep networks.However, 2D convolution enforces transla-
tional isochronism on the time and frequency axes for sound events,
whereas Frequency is not a shift-invariant dimension.To solve this
problem we use FDYCRNN as a second network architecture.

The CNN part is made up of 7 convolutional layers, and we re-
place the normal convolution in the baseline model with SKunit and
VGG block.And add a shortcut to make it a residual structure.The
RNN part is the same as the baseline with a bi-directional gated
recurrent unit (Bi-GRU).Fig. 1 shows the proposed VGGSK and
FDYCRNN architecture.

2.2. Pretrained model BEATSs

Audioset classification is a task very similar to DCASE TASK4.
BEATSs are models that perform extremely well in this task. BEAT's
is an iterative audio pre-training framework to learn Bidirectional
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Figure 1: (a)VGGSK architecture (b)FDYCRNN architecture

Encoder representation from Audio Transformers, where an acous-
tic tokenizer and an audio SSL model are optimized by iter-
ations.First, the audio self-supervised learning (SSL) model is
trained using random projection as the acoustic tagger. The au-
dio model is then augmented by pre-training or fine-tuning as the
acoustic tagger for the next iteration. The main goal is to allow the
acoustic tagger and the audio model to promote each other.

In our proposed system, we capture the frame-level embeddings
of BEATSs and fuse them with the features of the CNN. The frame-
level embeddings are matched with the CNN through an adaptive
averaging pool and finally fed together into the RNN and MLP clas-
sifiers.

2.3. Training process

How to effectively utilize training data affects the performance dra-
matically. In this section, we will describe our training methods.
Since the new baseline system uses the fusion features of the pre-
trained embedding extracted from BEATSs and the features of CNN
as input of the classifier, we also explore training methods that can
further improve the performance of the system. We apply noise stu-
dent, random consistency training, asymmetric loss to improve the
data utility.

e Noisy student
Noisy student (NS) widely used in DCASE 2022 Task 4, and
we will demonstrate that the method also bring positive im-
pact on training SED system using BEATs embeddings. The
training method consists of two stages. In the first stage, the
SED system is trained from scratch in the mean-teacher frame-
work, while we did not used data augmentation and dropout
at this training stage. Next, the teacher model trained from
the first stage provide pesudo-labels on the unlabeled data dur-
ing second stage, and the student model is trained on these.
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training method PSDS1  PSDS2
FDY-CRNN MT 0.499 0.794
FDY-CRNN NS 0. 501 0.798

FDY-CRNN MT+AFL(y =0, =1) 0.506 0.785

Table 1: Impact of noisy student and asymmetric focal loss on FDY-
CRNN using BEATs embeddings

training method PSDS1  PSDS2
FDY-CRNN MT 0413 0.647
FDY-CRNN MT+RCT 0. 435 0.662

Table 2: Performance of FDY-CRNN trained with RCT.

Furthermore, we apply mix-up, filter augment, SpecAugment,
frame/frequency shift and Gaussian noise to the data sample as
the input of the student model and dropout with 0.5 is used in
the student model to increase the generalization of the student
model.

e Asymmetric Focal Loss
Imbalances between active and inactive samples are commonly
found in multi-class tasks. A large number of inactive cases
will affect the system’s learning on active cases. Thus, we in-
troduce AFL (Asymmetric Focal Loss) instead of BCE(Binary
Cross-Entropy) to migrate the imbalance. AFL decouples the
active and inactive loss of BCE and applied focal function with
different focusing weight.

AFL(H) = (1 — §)"ylog(y) + §° (1 — y)log(1 —§) (1)

Here, g is the output probability and y is the ground-truth. v, ¢
are focusing parameters applied on active and inactive loss, re-
spectively. We set v < ( to suppress inactive loss to enhence
the training on active cases. We will show the impact of AFL
in experiment results.

e Random consistency training

Self-consistency training between teacher and student model
in mean-teacher is an effective way to increase the utilization
of training data. RCT(Random consistency training) further
leverage the unlabeled data with the concept of self-supervised
learning. The self-consistency loss Lsc proposed in RCT is
the MSE loss between the output of student model that take
original and augmented data as input respectively.

LSC:w*MSE(Daug(g)vg) (2)

4,y denote the output of original and augmented samples of
student model. D, is a transformation function that applied
on ¢ to maintain the consistency to §. w is a ramp-up factor
increasing during training, and the maximum value of w is 2.

Table 2 shows the impact of appling NS and AFL. The first row
is the result of FDY-CRNN using embeddings trained in mean-
teacher. When the system was trained with NS, PSDS-1 and 2 were
improved slightly. We further replace BCE loss function with AFL.
On PSDS-1, the system improved, but on PSDS-2, it decreased.
Next, we compare the impact of FDY-CRNN without using embed-
dings trained with RCT. As shown in Table 2, the performance of
FDY-CRNN was improved on PSDS-1 and 2.
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2.4. Data augmentation and Post-processing

We apply various data augmentations, including mix-up[11],
SpecAugment[12], frame-shift, pitch-shift, filter augment[13] to
improve the regulerization of the system. In addition, the dura-
tion time of each event class being quite different, we applied an
adaptive median filter to smooth the predictions for a better fit. The
window length of different classes is the optimal length found by
grid search on the validation set.

Due to the DTC (Detection Tolerance Criteria) and GTC
(Ground Truth Criterion) thresholds of PSDS-scenario 2 are 0.1,
we perform weak SED to minimize false negative cases and elimate
cross-trigger predictions. When model inference, we take weak pre-
dictions as strong predictions.

3. DATASET AND SIGNAL PROCESSING

3.1. Dataset

We used Domestic Environment Sound Event Detection Dataset
(DESED dataset) for model training and evaluation. The dataset
contains strong labeled, weak labeled, and unlabeled data. Strong
labels provide sound event classes and corresponding time stam-
pes (onset and offset times). And a weak label providess only the
classes of an audio clip. The DESED dataset contains 10 classes of
sound events, including alarms, bells, and ringing, blenders, cats,
dishes, dogs, electric shaver/toothbrushes, frying, running water,
speech, and vacuum cleaners. The training set consists of 10,000
synthetic and 3470 sound clips with strong labels, 1,578 sound clips
with weak labels, and 14,412 unlabeled samples. The validation set
contains 1,168 real samples with strong annotations.

3.2. Signal processing and model training

We take mel-spectrogram as input to the system. Audio clips in
the dataset are resampled to 16kHz and mono-channel. Then, mel-
spectrogram is extracted using Fourier transform with window size
of 2048, hop length of 256 and 128 mel-scale filters. As a con-
sequence, the input acoustic features were represented with 626
frames and 128 frequencies.

The model was trained with ADAM optimizer. The learning
rate was 0.001, and we applied ramp-up scheduler in first 50 epochs.

4. SUBMISSION SYSTEMS

We submit several systems, listed in Table 3. The main difference
between them is that they use different CNN architectures, VGGSK
and FDYCRNN respectively, and whether they are trained using
pre-trained models.

PSDS1 and PSDS2 are used to measure the performance of
each system. All of our proposed systems have improved per-
formance compared to the baseline Systeml/system3 increases
14.89% / 21.80% in total of PSDS1 and PSDS2. And sys-
tem2/system4 increases 1.4% / 2.29% in total PSDS1 and PSDS2.
System5 is our ensemble system,which increases 5.14% in total of
PSDS1 and PSDS2

5. CONCLUSION

In this technical report, we implemented two different systems
based on DCASE 2023 Task 4 A baseline, referred to as FDY-
CRNN and VGGSK. These two systems were improved on PSDS
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Table 3: Description for submitted system

no. system pretrained model PSDS 1 PSDS 2
1 VGGSK - 0.413 0.667
2 VGGSK BEATs 0.491 0.791
3 FDYCRNN - 0.448 0.697
4 FDYCRNN BEATs 0.499 0.794
5 FDYCRNN(ensemble) BEATs 0.525 0.804
- Baseline - 0.364 0.576
- baseline BEATSs 0.500 0.764

compared to baseline in our experiment. Furthermore, we utilize
training methods widely used in DCASE 2022 Task 4, including
noisy student, asymmetric focal loss and random consistency train-
ing. The experiment results show that these training methods have
an positive effect during training SED systems. Our submission sys-
tem is an ensemble of SED systems with different architectures and
training methods. We average the prediction of each SED system to
get a better score.
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