
Detection and Classification of Acoustic Scenes and Events 2023 Challenge

GENERAL ANOMALOUS SOUND DETECTION USING SOUND EVENT CLASSIFICATION
AND DETECTION

Technical Report

Ying Zeng, Hongqing Liu, and Yi Zhou

School of Communication and Information Engineering,
Chongqing University of Posts and Telecommunications, Chongqing, China

hongqingliu@cqupt.edu.cn

ABSTRACT
This technical report describes our team’s submission to DCASE
2023 Task 2. In this report, we utilize sound event classification
and detection as an auxiliary task for anomalous sound detection
(ASD), and this method only needs to train a general ASD model
to detect anomalies, and detects multiple anomalies, and can detect
them at the same time. The experimental results show that our ASD
model outperforms the official model.

Index Terms— Anomalous sound detection, sound event clas-
sification, sound event detection

1. INTRODUCTION

With the developments of society and the progress of technology,
machine equipment plays an increasingly important role in the in-
dustrial production. However, during the process of machine equip-
ment operations, various factors often cause failures, which can af-
fect production efficiency and equipment performance, even caus-
ing serious safety accidents. Anomalous Sound Detection (ASD),
as an important part of machine state monitoring tool, involves real-
time monitoring and analysis of the sound during the operations of
the equipments to detect possible failures of the equipment.

Neural network-based methods have been widely used in ASD
problems. These methods train an autoencoder (AE) [1]. AE only
needs normal sounds for training. It uses the encoder to compress
the data to preserve the most important features, and uses the de-
coder to reconstruct raw data. Another common approach is to train
a classifier as an auxiliary task, based on a realistic basic assump-
tion. Since there are often multiple machines of the same machine
type in a factory, there are often some differences in the sounds from
different machine IDs. We can distinguish different IDs of the same
machine type by training a classifier. In the testing phase, using the
negative logarithm of the probability as the anomaly score, anoma-
lous sounds tend to output a smaller probability, thus revealing a
higher anomaly score. In the previous challenge [2, 3], training a
classifier as an auxiliary task greatly improved the detection perfor-
mance of each class of machine type.

In the DCASE 2023 Task2 challenge [4, 5], each machine type
contains only one section, so the previous method cannot be used
directly. This paper studies the classification and detection of sound
events to solve the above limitations. By training a sound event
classification or detection model as an auxiliary task, we can also
use the log likelihood as an anomaly score to detect anomalies. In
addition, we also use the embedding extracted by the model to cal-
culate the Mahalanobis distance to measure the abnormality, and

Table 1: Model architecture, where N is the number of classes, t
indicates the expansion factor, c is the output channels, n denotes
the number of Inverted residuals blocks, and s is the stride. The first
layer of each sequence has a stride s and others use stride 1.

Operator t c n s
Conv2d 3x3 - 32 1 2
Blockneck 1 16 1 1
Blockneck 6 24 2 2
Blockneck 6 32 3 2
Blockneck 6 64 4 2
Blockneck 6 96 3 2
Blockneck 6 160 3 1
Blockneck 6 320 1 1

Conv2d 1x1 - 1280 1 -
Linear - N - -

the experimental results show that it is better than the official AE
method.

2. METHOD

Our proposed method is categorized into two stages:

1. Train a sound event classification or detection model as an
auxiliary task.

2. Calculating the anomaly score using the embeddings ex-
tracted by the model.

In actual scenarios, it is necessary to reduce the complexity
of the algorithm and improve the operation speed, so we use Mo-
bileNetV2 [6] and shallow ViT [7] as our baseline model.

2.1. MobileNetV2

2.1.1. MODEL PRETRAIN

The model structure is provided in Table 1. Our approach first
trains a standard multi-label classification model [8] on the Au-
dioset dataset, which contains 527 labels. Given a training audio
clip signal(i.e., of length 10 seconds) and a multi-hot label y, the
model will output a predicted vector ŷ. The aim of the training is
to optimize the binary cross-entropy (BCE) loss function, which is
defined as:

LBCE = −y log(ŷ) + (1− y) log(1− ŷ) (1)
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Figure 1: The visualization of the embeddings of the MV2 SEC by t-SNE.
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Figure 2: The visualization of the embeddings of the MV2 SED by t-SNE.
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Figure 3: The visualization of the embeddings of the ViT SEC by t-SNE.
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Figure 4: The visualization of the embeddings of the ViT SED by t-SNE.

Table 2: Training Configurations for Different Models.

Train clip Inference clip Inference stride Iterations lr

MV2 Pretrain 10s - - 50000000 0.001

MV2 Finetune 3s 3s 0.5s 40000 0.001

ViT 3s 3s 0.5s 40000 0.001

2.1.2. MODEL FINETUNE

In the fine-tuning stage, we used the pre-trained model for model
parameter initialization to train the sound event classification (SEC)
and sound event detection (SED) models. The aim of the SEC train-
ing is to optimize the cross-entropy (CE) loss function, which is
defined as:

LCE = −y log(ŷ) (2)

The aim of the SED training is also to optimize the BCE loss
function. It is worth noting that the output time frame number of
SED is 1. During the SED training process, several events will be
simulated simultaneously with a certain probability. Compared with
the SEC model, the advantage of this setting is that it can prevent
the machine from misjudgement when it is disturbed by the sound
of other machines, because the SEC’s output probability will be
affected when multiple events occur at the same time.

To reduce the calculation complexity of the subsequent process,
the output channel of the Conv2d 1x1 layer is set to 128, which
means that the dimension of the embeddings output by the model is
128.

2.2. ViT

The main idea of ViT [7] is to divide an image into a fixed number
of small blocks, and then convert these small blocks into vectors.
These vectors are passed as input to the Transformer encoder, which
learns how to combine these vectors under a specific task. Like
MobileNetV2, we train an SEC and an SEC model separately.

The detailed configuration of ViT is as follows. Use 16 × 16
patch to block the input features, and the block features are changed

Table 3: Model Ensemble Configuration.

Ensenmble

Ensemble1 MV2 SEC + MV2 SED

Ensemble2 ViT SEC + ViT SED

Ensemble3 Ensemble1 + Ensemble2

Ensemble4 Ensemble1 * Ensemble2

from 256 to 128 dimensions after linear transformation. The depth
of the Transformer encoder is set to 1, and the multi-head attention
mechanism is used, and the head is set to 8. The mlp dimension in
the feedforward neural network is set to 4 times the feature dimen-
sion.

2.3. ANOMALY SCORE

We use the Mahalanobis distance as the anomaly score. The for-
mula for calculating Mahalanobis distance is

A =
√

(x− µ)TΣ−1(x− µ) (3)

where x is the mean vector, µ is the mean vector representation
corresponding to the machine and Σ is the covariance matrix corre-
sponding to the machine. For the source domain and the target do-
main, we use the data of different domains to calculate the average
vector µ, and use all the training data of the machine to calculate
the covariance matrix Σ.
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Table 4: The average results of AUC-S for different machine types.

ToyCar ToyTrain bearing fan gearbox slider valve Average

AE MSE 70.10% 57.93% 65.92% 80.19% 60.31% 70.31% 55.35% 64.79%

AE MAH 74.53% 55.98% 65.16% 87.10% 71.88% 84.02% 56.31% 68.84%

MV2 SEC 61.60% 65.60% 74.72% 60.40% 70.48% 93.80% 69.84% 69.59%

MV2 SED 61.08% 61.12% 73.92% 66.32% 81.56% 91.96% 68.04% 70.58%

ViT SEC 53.60% 50.68% 56.60% 73.40% 86.56% 99.24% 64.12% 65.48%

ViT SED 51.00% 51.64% 57.56% 73.92% 86.80% 98.92% 63.12% 65.21%

Ensemble1 62.20% 65.96% 75.64% 65.64% 78.00% 94.88% 70.00% 71.91%

Ensemble2 52.08% 51.72% 55.20% 74.76% 89.52% 99.20% 64.08% 65.49%

Ensemble3 57.32% 57.56% 67.68% 71.24% 90.04% 99.24% 66.44% 70.09%

Ensemble4 57.84% 57.80% 70.12% 71.44% 89.48% 99.16% 66.92% 70.67%

Table 5: The average results of AUC-T for different machine types.

ToyCar ToyTrain bearing fan gearbox slider valve Average

AE MSE 46.89% 57.02% 55.75% 36.18% 60.69% 48.77% 50.69% 49.59%

AE MAH 43.42% 42.45% 55.28% 45.98% 70.78% 73.29% 51.40% 52.37%

MV2 SEC 54.04% 63.28% 69.20% 51.00% 66.59% 88.84% 59.60% 62.83%

MV2 SED 54.40% 53.80% 59.00% 55.04% 71.92% 87.12% 70.60% 62.70%

ViT SEC 49.44% 58.20% 61.64% 71.48% 80.08% 97.44% 57.52% 64.96%

ViT SED 54.16% 57.44% 64.24% 74.72% 75.24% 97.88% 56.80% 66.08%

Ensemble1 54.88% 58.84% 65.72% 53.68% 70.48% 89.16% 66.68% 63.95%

Ensemble2 52.84% 57.64% 63.08% 73.68% 79.56% 97.76% 57.36% 66.08%

Ensemble3 55.08% 60.84% 65.32% 62.44% 80.04% 97.16% 60.68% 66.55%

Ensemble4 55.08% 60.56% 65.48% 66.80% 79.36% 96.72% 61.04% 67.16%

Table 6: The average results of pAUC for different machine types.

ToyCar ToyTrain bearing fan gearbox slider valve Average

AE MSE 52.47% 48.57% 50.42% 59.04% 53.22% 56.37% 51.18% 52.84%

AE MAH 49.18% 48.13% 51.37% 59.33% 54.34% 54.72% 51.08% 52.36%

MV2 SEC 50.94% 50.58% 61.42% 50.52% 55.73% 68.68% 53.05% 55.19%

MV2 SED 47.58% 49.47% 57.52% 52.95% 55.95% 64.95% 52.73% 53.95%

ViT SEC 51.26% 50.63% 50.26% 50.57% 58.15% 91.10% 53.68% 55.67%

ViT SED 51.21% 49.16% 50.58% 51.26% 53.42% 90.68% 52.78% 54.75%

Ensemble1 48.47% 49.74% 61.68% 51.73% 56.89% 68.11% 53.36% 55.00%

Ensemble2 51.71% 49.95% 51.10% 50.31% 55.26% 91.47% 53.47% 55.32%

Ensemble3 51.10% 48.89% 53.05% 51.57% 53.31% 89.53% 53.95% 55.24%

Ensemble4 50.89% 49.00% 54.15% 51.36% 53.47% 87.95% 54.26% 55.34%
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3. EXPERIMENTS

3.1. DATASETS

3.1.1. MobileNetV2

The pretrained dataset used in this work is Audioset [9]. And in
the fine-tuning stage, this work uses the DCASE 2023 Challenge
Task2 dataset [10, 11], which includes recordings of 14 classes and
a sampling rate of 16 kHz.

3.1.2. ViT

The model only use the DCASE 2023 Challenge Task2 dataset,
which includes recordings of 14 classes and a sampling rate of 16
kHz.

3.2. SETUP

We load the audio data using the default sample rate and apply a
short time Fourier transform (STFT) with a window size of 512 and
a hop length of 160. The STFT spectrogram convert into a Mel
spectrogram with a 64-band Mel filter. We used Adam as the opti-
mizer and the learning rate of the model was set to 0.001. Training
runs with a batch size of 32, and see Table 2 for detailed configura-
tions.

4. RESULT

To show the performance, we evaluate the detection performance
of the area under the receiver operating characteristic curve (AUC)
and the partial AUC (pAUC) with p = 0.1. Table 3 shows the config-
urations of the 4 ensemble models we submitted. We simply add or
multiply the anomaly scores output from different models to obtain
the final anomaly score.

AE MSE and AE MAH indicate that the official model uses
MSE and Mahalanobis distance as anomaly scores.

MV2 SEC and MV2 SED respectively represent the SEC
model and SED model trained by MobileNetV2.

ViT SEC and ViT SED respectively represent the SEC model
and SED model trained by ViT.

The experimental results are shown in Table 4, 5, and 6. The
average represents the harmonic mean. We also used t-SNE [12] to
visualize the embeddings of 14 machines, as shown in Figures 1, 2,
3, and 4.

5. CONCLUSION

We presented our submission systems for DCASE2023 Challenge
Task 2 in this technical report, using two proposed methods. Exper-
imental results show that our proposed systems outperformed the
baseline systems.
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