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ABSTRACT

This technical report describes the systems submitted to the
DCASE2023 challenge task 3: sound event localization and
detection (SELD) -- track B: audio-visual inference. The goal of
the sound event localization and detection task is to detect
occurrences of sound events belonging to specific target classes,
track their temporal activity, and estimate their directions-of-
arrival or positions during it. Compared with the official baseline
system, the improvements of our submitted system based on
CRNN [1] mainly contain two parts: more powerful audio
feature processing network architecture, additional visual feature
module. For audio network, we utilize depth-wise separable
convolution with multi-scale kernel size to better learn the
relevant information of different sound event categories in audio
features. Then, we modify the pooling stage and some residual
operation is added to prevent information loss. Besides, we use
the corresponding image at the start frame of the audio feature
sequence processed by a pretrained ResNet-18 model as
additional visual feature. Experimental results show that our
system outperforms the baseline method on the development
dataset of Sony-TAu Realistic Spatial Soundscapes 2023
(STARSS23).

Index Terms— Sound event localization and
detection, audio-visual fusion, depth-wise separable
convolution, ResNet-18

1. INTRODUCTION

Sound event localization and detection (SELD) aims at detecting
types of sound and their corresponding temporal activities also
spatial position. Polyphonic SELD refers to cases where there are
multiple sound events overlapping in time. Due to its ability to
characterize sound sources spatially-temporally, SELD can be
used to automatically describe social and human activities and
assist the hearing impaired to visualize sounds.

The SELD task first as task 3 of DCASE was in 2019 [2] which
were based on emulated multichannel recordings, generated from
event sample banks spatialized with spatial room impulse
responses (SRIRs) captured in various rooms and mixed with
spatial ambient noise recorded at the same locations. In 2019, the
SELD challenge of DCASE only includes stationary sound
sources. To further improve the task, moving sound sources and
unknown directional inferences are introduced in the following
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two 2 DCASE challenges respectively [3, 4]. This challenge task
of 2022 [5] changes considerably compared to the previous
iterations since it transitions from computationally generated
spatial recordings to recordings of real sound scenes, manually
annotated, called Sony-TAu Realistic Spatial Soundscapes 2022
(STARSS22) [6]. Based on STARSS22, the dataset used in this
year called STARSS23 maintains all the recordings of
STARSS22, while it adds an additional 4hrs of material captured
in Tampere University distributed between the training and
evaluation sets. It further includes simultaneous 360° video
recordings for all the audio recordings and it augments the
respective labels with source distance information, apart from the
direction-of-arrival.

By hearing and seeing, human brain is able to perceive
surroundings and extract complementary information. For this,
the SELD task of DCASE 2023 prepare an audiovisual track to
stimulate further developments on SELD research. The video
data has the potential to mitigate difficulties and ambiguities of
the spatiotemporal characterization of the acoustic scene solely
through audio data. So compared with the audio-only baseline
takes only the audio input, the baseline method for the audio-
visual SELD task takes both the audio and a visual input and the
network architecture is based on CRNN with a Multi-ACCDOA
[7] sequence output.

In this work, we improve the baseline CRNN network with a
more effective audio encoder and utilize raw video frame
embedding corresponding with the start frame of the audio
feature sequence to enrich visual feature. The detail of our
proposed method is described in section 2. Experimental results
show that our method outperforms the DCASE 2023 challenge
audio-visual baseline model on development dataset.

2. THE PROPOSED METHOD

In this part, we introduce our proposed approach for audio-visual
SELD based on CRNN. Figure 1 shows the overall process of
our framework which consists of feature extraction, audio
encoder, video encoder, decoder.

2.1 Feature Extraction
For audio feature, we first utilize STFT transform the raw audio

signal into complex spectrograms. Then, the amplitude of
complex spectrograms and the frequency-normalized inter-
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(a) The diagram of audio-visual fusion SELD network
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Figure 1: Overall view of proposed framework

channel phase differences (IPDs) are calculated respectively.
Finally, we concatenate the amplitude of complex spectrograms
and IPDs in channel-wise as the input audio feature.

For visual feature, we use YOLOX-Tiny [8], a light model of
YOLOX pre-trained on COCO dataset, as object detector to
detect person in the corresponding image at the start frame of the
audio feature sequence. Then the bounding boxes of these
people are transformed to a concatenation of two Gaussian-like
vectors as visual feature, where they represent likelihoods of
objects present along the image's horizontal axis and vertical
axis [9]. Considering there are some sound event class in
STARSS23 which are not relate to people, we pass raw video
frame which is also the start frame of the audio feature sequence
into a pre-trained ResNet18 [10] model from torch-vision to get
a visual embedding as additional visual feature.

2.2 Network Architecture
2.2.1 Audio Encoder

The audio encoder architecture in our audio-visual fusion SELD

network is showed in figure 1. Unlike form baseline, we sperate
the channel up-sampling operation from first convolution part
and modify the time and frequency block. To better catch the
relevant information of different sound event categories in audio
features and in view of model parameters, we introduce a depth-
wise separable convolution [11] (DSC) block composed of two
depth-wise 2D convolution with 3 and 5 kernel size respectively
and a point-wise 2D convolution with 1 kernel size to perform
channel fusion showed in Figure 1(b). First, a DSC block is used
to up sample the input audio channel. Then, three time and
frequency down-sampling blocks are used to reduce dimension
size for feature fusion. For time and frequency down-sampling
block showed in figure 1(c), a DSC block is first used to further
encode the audio feature. Then we use both 2D convolution with
different stride and kernel-size and max-pooling to down sample
audio feature in time and frequency dimension. The feature after
2D convolution and max-pooling are added as a residual
connection. For every layer, rectified linear unit activation and
batch normalization are added to introduce nonlinear

characteristics. Through audio encoder, we can get audio
embedding

2.2.2 Visual Encoder

As the video object Gaussian-like vectors and raw video frame
embedding are both pre-processed, we use two full connect
layers to encode them into visual embedding R
respectively. Then, we expand and repeat their time dimension
to match audio embedding.

2.2.3 Decoder

As showed in figure 1, we straightly concatenate with
and respectively and pass them into two bidirectional GRU
for temporal modeling. After that, the two part are added to get
the fusion embedding . Then, a full connected layer is used to
map the into output dimension. Due to time down-sampling
used in audio encoder, an up-sampling operation called
interpolate [12] in the temporal dimension is conducted to ensure
the output size is consistent with label temporal dimension. At
last, the output result is reshaped into Multi-ACCDOA format.

3. EXPERIMENTS

3.1 Dataset

The Sony-TAu Realistic  Spatial  Soundscapes 2023
(STARSS23) dataset contains multichannel recordings of sound
scenes in various rooms and environments, together with
temporal and spatial annotations of prominent events belonging
to a set of target classes. The dataset provides two formats of
audio data: 1) First-Order of Ambisonics; 2) tetrahedral
microphone array. Besides, STARSS23 further includes
simultaneous 360 °  video recordings which are spatially and
temporally aligned with the microphone array recordings. During
development stage, we train our proposed model on foa/video-
dev-train-sony/tau of STARSS23, and evaluate those systems
using foa/video-dev-test-sony/tau of STARSS23.
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3.2 Hyper-parameters

The audio data sampling frequency of the dataset is 24 kHz. A
1.27 seconds audio clip is first random selected to do Short-time
Fourier Transform with a hop size of 240 and 512 Fast Fourier
Transform size for the amplitude of complex spectrograms and
IPDs in training. And the audio clips in testing is are segmented
to have a fix length of 1.2 seconds with no overlap. The video
frames per second is 29.97. The first video frame of every audio
clip is used for object detection and raw frame input. Adam
optimizer is used with a le-6 weight decay. The learning rate is
set to 0.001, reducing by 0.5 times every 10000 epochs. The max
epochs for training the model is 40000.

3.3 Experimental results

For evaluation, we use official evaluation metrics to evaluate the
SELD performance. The SELD score is computed as,

1 LE
SELD=— (ER+(1-Fy+ — +(1-LR)) )
4 180

where ER, F, LE, LR are the official SELD metrics. Tablel
shows the performance of our submit systems test on foa/video-
dev-test-sony/tau  of STARSS23. System #2 is the best
checkpoint of our proposed method. For system #1, we average
the result of two checkpoints with lowest SELD score based on
system #2. Compared to system #2, we use pitch-shift
additionally for system #4. And system #3 use the same way as
system #1 but based on system #4.

Table 1. SELD performance of our systems.

System ER2o- Fa0. (macro) LEcp LRcp

FOA Baseline 1.07 14.3% 48.4% 35.5%
System #1 0.97 17.1% 44.1% 42.7%
System #2 0.97 15.9% 44.9% 41.7%
System #3 0.98 17.9% 41.9% 40.6%
System #4 1.00 17.4% 42.3% 42.0%

4. CONCLUSION

We have introduced our proposed audio-visual fusion method
based on CRNN for sound event localization and detection. For
audio encoder, we devise a depth-wise separable convolution
with multi kernel size and modify the time and frequency down-
sampling block used in baseline method. And we introduce raw
video frame corresponds to the start frame of the audio feature
sequence as additional visual feature. Experiment results show
that our proposed method outperforms the baseline method.
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