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ABSTRACT

Unsupervised pretrained models have been widely applied in lots of
scenarios successfully. DCASE 2023 challenge Task? is about first-
shot unsupervised anomalous sound detection. To solve this prob-
lem, we tried to use several unsupervised pretrained models trained
on thousands hours of speech. By fine-tuning pretrained big mod-
els with datasets of DCASE 2023 challenge Task2, we found that
pretrained models outperformed small models trained from scratch.
Our best pretrained model achieve hmean of 66.56% on the devel-
opment dataset, which is much better than the auto-encoder base-
line.

Index Terms— Unsupervised pretrained models, first-shot, un-
supervised anomalous sound detection

1. INTRODUCTION

The task of anomalous sound detection (ASD) involves determin-
ing whether the sound produced by a specific machine is classified
as normal or anomalous. The task 2 of DCASE 2023 [1] Chal-
lenge focuses on identifying abnormal states of the target machine
through the analysis of sounding data. In contrast to acoustic scene
classification, this task is unsupervised learning scenario because
the training data only consists solely of samples from the normal-
state class. However, the goal is to determine whether a test sample
belongs to another class known as the anomaly class, which encom-
passes various anomalous situations. In practical scenarios, changes
in a machine’s operational states or environmental noise can lead to
domain shifts. Participants are also required to use domain general-
ization techniques to address domain shifts, where the distributions
of the training and test data are different.

This year, the key challenge of this task is the “first shot” prob-
lem. In practical scenarios, it is difficult for us to collect data and
train models on a new machine, or the number of machines is very
small. So the main differences in the task of this year are that:

e The development dataset and evaluation dataset don’t have the
same machine type.

e There is only one section for each machine type.

To solve this problem, we try to find the audio encoders with
generalization ability to avoid overfitting on a small amount of train-
ing data. The pretrained models on large-scale audio data meets
our needs. In recent years, pre-trained models have emerged as
the dominant approach for achieving state-of-the-art performance

in various natural language processing (NLP) tasks. Building upon
the groundbreaking achievements of models like BERT [2] and
GPT [3], researchers in the speech community have introduced sev-
eral innovative approaches, such as wav2vec 2.0 [4], HuBERT [5],
Unispeech [6] and WavLM [7], which harness large-scale unlabeled
data. These methods have yielded impressive results in automatic
speech recognition (ASR) tasks, capitalizing on the power of pre-
training and demonstrating the potential of leveraging vast amounts
of unlabeled data in the speech domain.

Inspired by the excellent performance of the pre trained model
in various generalization tasks [8, 9], we adopt several pretrained
models to anomalous sound detection task for “first shot” gener-
alization performance. In order to solve the problem of poor data
diversity of a single machine, we also use “speed perturb” to aug-
ment the data which is firstly proposed in automatic speech recog-
nition [10]. Finally, in order to obtain a more stable system, we also
use transformer pooling method for subsystems fusion. In sum-
mary:

e We utilize several unsupervised pre-trained models for general
performance.

e In addition, we propose data augmentation method named
“speed perturb” to simulate different operation status of ma-
chine.

e we use transformer pooling methods to ensemble several sub-
systems.

In Section 2, we provide an overview of the unsupervised pre-
trained models utilized in our systems. Following that, in Section 3,
we present a detailed description of our developed system, outlin-
ing each subsystem it comprises. For each subsystem, we elaborate
on its training process and the methods employed to update its hy-
perparameters. Moving forward, in Section 4, we showcase our
detection results. Finally, in Section 5, we draw conclusions based
on our report.

2. PRE-TRAINED MODELS

In this section, we give a brief introduction of four unsupervised
pretrained models we used in our systems.
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2.1. Wav2Vec 2.0

Wav2vec 2.0 [4] is a continuation of the wav2vec [11] series. It re-
place the original architecture’s convolutional context network with
multi-layers transformer based encoder. While wav2vec 2.0 incor-
porates discrete speech units and a quantization module similar to
the vg-wav2vec [12] model, it reverts to the original contrastive
objective used in the first version of wav2vec instead of adopting
BERT’s masked language modeling objective. It’s noted that we
use the scale-up XLS-R version, which uses 300M parameters and
is trained on half a million hours of speech in 128 different lan-
guages.

2.2. UniSpeech

UniSpeech [6] presents a multi-task model that integrates a self-
supervised learning objective, similar to wav2vec 2.0, with a su-
pervised ASR objective using Connectionist temporal classification.
This combined approach enables enhanced alignment between dis-
crete speech units and the phonetic structure of the audio, resulting
in improved performance in multi-lingual speech recognition and
audio domain transfer tasks.

2.3. HuBERT

HuBERT [5] utilizes the architecture of wav2vec 2.0 while substi-
tuting the contrastive objective with BERT’s original masked lan-
guage modeling objective. To achieve this, the model undergoes a
pre-training process that involves two steps. In the clustering step,
short segments of speech are assigned pseudo-labels, and in the
prediction step, the model is trained to predict these pseudo-labels
at randomly-masked positions within the original audio sequence.
This approach enables the utilization of BERT’s objective within
the wav2vec 2.0 architecture.

2.4. WavLM

WavLM [7] models follow the HuBERT framework while focus-
ing on data-augmentation during the pre-training stage to improve
speaker representation learning and speaker-related downstream
tasks. The WavLM model is especially efficient for downstream
tasks, it is currently leading the SUPERB leaderboard [13], a perfor-
mance benchmark for re-using speech representations in a variety of
tasks such as automatic speech recognition, phoneme recognition,
speaker identification, emotion recognition.

3. APPROACHES

3.1. Speed Perturbation

Speed perturbation data augmentation is a technique commonly
used in the field of automatic speech recognition (ASR) [10] and
speaker verification (SV) [14] to improve the robustness and gen-
eralization of systems. Inspired by these, we apply speed pertur-
bation method for augmenting the different running conditions of
machines.

During the speed perturbation process, the original speech sig-
nal is modified by stretching or compressing its duration while
maintaining the original pitch. This can be achieved by resampling
the signal at a different rate or adjusting the playback speed. By al-
tering the speed, the operation status of the machines are modified,
resulting in a diverse set of augmented data.
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Figure 1: Overview of the pretrained models based classification
system. Rawwav audio is encoded into sequence representation by
transformer layers. Then, a pooling layer here to aggregate the tem-
poral information into segment-level audio embeddings. A classfier
is applied for finetuning the pretrained models on machine dataset.
After training, a outlier detector is used to provide the anomaly
score based on embedding distribution.

3.2. Classification with pre-trained models

The general idea of classification with pretrained models is fine-
tuning the pretrained models with classification objective function
to extract the embeddings of the samples by classifying labels ex-
tracted from the metadata.

The overview is shown in Figure 1 and it can be divided into
three stages. First, we finetune the pretrained models on training
data. The input feature of pretrained model is waveform. After sev-
eral convolution and transformer layers, the wavform are encoded
into a sequence representation. Then, the sequence will be aggre-
gated by a pooling layer for chunk-level audio embedding. In our
system, the network is optimized to predict the attributes ID from
meta data using arcmargin softmax loss [15] as Equation 1. Com-
pare with tradition softmax loss, it can explicitly enforce the similar-
ity for intra-class samples and the diversity for inter-class samples.

s(cos(0y1 i+tm))

-5 Zlog M

where Z = e*(¢os(y;.itm) 4 P es(cos(®5.) 9., is the
angle between the column vector W and embeddmg X;, where
both Wj and x; are normalized. s is a scaling factor and m is a
hyperparameter to control the margin.

Second, after the pretrained models achieve the coverage in
training data, we use pretrained network to extract the embeddings
of training set to get the distribution of normal machine data. These
data can be used to train the outlier detector. For the outlier de-
tection algorithm, we tried several well known algorithms such as
k-NN [16], LOF [17], cosine distance and Mahalanobis distance.
This task is “first shot” challenge, and we cannot tune the hyperpa-
rameters on the machines of evaluation. So we choose KNN as the
only outlier detector in our systems.

Laan =
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Table 1: Results of different unsupervised pretrained models on anomalous sound detection.The ck denotes different checkpoints. TF-Pool

means using transformer pooling.

Machines

Bearing Fan  GearBox  Slider

System Index Pretrained Models All Hmean

) HuBERT 63.41

@ HuBERT (TF-Pool) 63.66

©) Wav2Vec (ckl) 66.49

@ Wav2Vec (ck2) 66.56

®©) Wav2Vec (ck3) 65.18

©) Wav2Vec (ck4) 65.16

©) Wav2Vec (TF-Pool) 65.88

® WavLM 65.49

O® WavLM (TF-Pool) 64.64

@ UniSpeech 65.08

(@) UniSpeech (TF-Pool) 65.39

Fusion Systems

DO+3+®+0 Submission 1 68.01
B+®+O+® Submission 2 67.55
B+@+O+®+®+1) Submission 3 68.59
Q+D+O®+0O Submission 4 67.28

Finally, for testing set, we extract the corresponding embed-
dings with a sliding window and then compute the anomaly score
based on the pretrained outlier detector before.

3.2.1. Training Configuration

For the detailed training configuration, we adopt the AdamW as
the optimizer to optimize the whole network. In order to prevent
overfitting on training data, we use a relatively small learning rate
of Se-4. The weight decay is set to 1e-4. The whole training process
will last 10k steps and we choose the best one on the validation set.
Besides, to construct the training batch effectively, we randomly
sampled 2s from each recording in the training process.

3.3. Transformer Pooling

We found that in a recording, the effective signal does not exist
continuously. Therefore, it is very important for the model to learn
to discover effective information on its own. As mentioned in the
last section, we chunk the recoding into some short segments in
the training process. For each segment, we can extract one em-
bedding representation. It is necessary to gather the embeddings
from the same recording into one embedding. Based on the above
considerations, we decided to use a transformer layer to fuse mul-
tiple embeddings into one. The input dimension of the transformer
layer corresponds to the embedding dimension and we set the hid-
den dimension in the transformer layer to 2048. Same to the train-
ing objective in Figure 1, a classification loss is used to optimize the
transformer pooling layer.

3.4. Ensemble

To obtain more stable results for submission, we use score-level
fusion to ensemble several subsystems. The score fusion can be
divided into three steps:

e for each subsystem, we compute the anomalous score by back-
bone detector algorithms.

e In order to balance the various systems, we apply the min-max
normalization based on the scores distribution of each subsys-
tem.

Snorm (2)

Smaa: - Smin

e Finally, we use weighted sum to ensemble several subsystems.

Snorm =

Sfusion = Z szz (3)
where w; and S; are the weight and score of subsystem 4.

4. RESULTS

We list all the pre-trained model results in Table 1 and we fuse part
of the systems to get our final 4 submission systems following the
steps in section 3.4. From the results, we find that the Wav2Vec
model performs the best. But the gap between different pre-trained
models is not that large. Interestingly, the different pre-trained mod-
els complement each other and the fusion operation can bring fur-
ther improvement.

5. CONCLUSION

In this task, to tackle the “first shot” problem, we apply several
wav2vec-style unsupervised pretrained models which are trained on
large scale speech data to anomalous detection for generalization
performance. Comparing with autoencoder based baseline system,
it can achieve excellent results on validation set. In addition, we
propose speed perturbation on this task for augmenting data with
simulated different operation status. In the last, we ensemble our
subsystems with score-level fusion, and we choose four fusion re-
sults with different weights as our final submission.

ToyCar ToyTrain Valve

7129 5945 67.61 80.82  56.09 54.79 61.33
71.19  62.29 69.7 77.99  59.52 53.02 58.71
65.61 70.63 82.67 8235 5573 52.32 68.59
62.62  66.66 71.77 8396 5892 55.92 68.61
70.65  67.57 76.17 88.62  55.88 48.20 64.98
65.00  63.88 74.12 8442  57.82 54.45 64.96
64.02  64.77 71.31 83.92  60.01 56.53 67.08
71.70  55.70 74.65 82.88  55.20 61.43 66.07
71.14  55.87 75.89 86.42 5753 58.75 58.19
74.74  56.92 73.49 80.87  57.26 54.40 67.64
7490  57.39 69.67 85.02  57.36 56.96 65.93
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