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ABSTRACT

This report describes our approach to Task 1 of the DCASE (De-
tection and Classification of Acoustic Scenes and Events) Chal-
lenge [1]. To classify urban acoustic scenes through short au-
dio samples, we experiment with Receptive Field Regularized [2]
Convolutional Neural Networks - and S4 [3] Models as classi-
fiers. To stay within the allowed model-complexity limits of the
challenge, we use a Convolution Neural Network (CNN) with 13
layers plus one classification layer, and one CNN layer followed
by 3 S4 Blocks, respectively. Additionally, we augment the Mel-
Spectrograms, through the MixStyle [4] or Mixup [5] method. We
surpass the baseline with our experiments significantly, and, in par-
ticular, the S4 model stands out due to its low number of multiply-
accumulate operations.

Index Terms— Acoustic Scene Classification, Convolutional
Neural Networks, S4, Receptive Field Regularization, Low-
Complexity

1. INTRODUCTION

In the context of the course ”Machine Learning and Audio: a chal-
lenge” by the Institute of Computational Perception at the Johannes
Kepler University Linz the authors of this report teamed up to par-
ticipate in Task 1 of the DCASE Challenge 2023 [1] named ”Low-
Complexity Acoustic Scene classification”. As the name suggests,
its aim is the classification of short audio samples (1s, 44.1 kHz,
24-bit) into categories of typical urban locations, such as airports or
shopping malls. In addition, the data can be separated by the 12 Eu-
ropean cities in which it was recorded and the specific device that
was used for recording. These recordings originated from 4 real
devices (A, B, C, D) and additional 11 simulated devices (S1-11),
which were generated using the data of Device A. To set a focus
on the generalization capabilities of models the data from 2 of the
cities and 6 of the devices (D, S7-11) is only present in the evalua-
tion set [6]. On top of the focus on generalization capabilities, the
submitted models are constrained concerning memory for the pa-
rameters (<128 KB) and MAC operations (<30 MMACs). These
two constraints are also part of the evaluation metric, which can
be viewed as a weighted sum of Macro Accuracy (50%), needed
Memory (25%), and MAC operations (25%). In previous editions
the many successful approaches built upon the features in the Mel-
Spectrograms of the audio samples, which were processed through

https://github.com/viddavue/MALACH_23_T1/

CNNs. Our approach to this task was twofold: for one we at-
tempted to reach a good performance through experimenting with
RFR-CNNs [2], while on the other hand, we were also experiment-
ing with using an efficient S4 model [3] architecture with a low
MAC and parameter count while still beating the baseline. Addi-
tionally, we used the regularization method Freq-MixStyle [4, 7].

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Audio processing

The raw audio signal is down-sampled using a sampling rate of
32kHz, and the input features are extracted from the raw audio
signals using a Short Time Fourier Transformation (STFT) with a
hamming window of size of 2048 and an overlap of 36% for the
CP-ResNet [8, 2] and the same window size and an overlap of 25%
for the S4 model. We apply a Mel-scaled filter bank to end up with
256 frequency bins for both models. We also experimented with
random time and frequency masking of the Mel-Spectrogram sim-
ilar to SpecAugment [9], but this did not improve generalization in
combination with the following two methods.

2.2. Freq-MixStyle

As in Schmid et al. [2], we experimented with Freq-MixStyle to
better generalize to unseen devices. Freq-MixStyle uses an aug-
mentation technique described in Zhou et al. [4], but instead of nor-
malizing over the channels, we normalized over the frequencies as
described in Kim et al. [7]. They show that the device style is mainly
contained in the frequency statistics and by mixing those, the model
learns to handle different device styles. Freq-MixStyle can be con-
trolled by the parameter α, which specifies the shape of the Beta
Distribution of drawing mixing coefficients, and p gives the proba-
bility to apply Freq-MixStyle to the batch.

2.3. Mixup

As proposed by Zhang et al. [5] we applied Mixup on the input
of the S4 models as it was shown that Mixup improves generaliza-
tion in general [10]. Although Freq-MixStyle should outperform
Mixup [2], it seems that Freq-Mixstyle and S4 are a bad fit. In our

3. ARCHITECTURE

For our submissions, we used models from two different model
classes namely a Receptive Field Regularized [11] Convolutional
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Neural Network (RFR-CNN) inspired by Schmid et al. [2] and the
S4 model by Gu et al. [3].

3.1. RFR-CNN

Two models we submitted are RFR-CNNs, which are based on CP
ResNet [8, 2]. In the last DCASE challenge RFR-CNNs were used
as student models [2] and have performed particularly well. Table 1
shows a summary of our first model.

WIDTH BLOCK CONFIG

1 → 24 Input 5× 5, HS, P

24 R 3× 3, ReLU, 1× 1, Pf

24 R 3× 3, ReLU, 3× 3, Pf

24 → 48 R 3× 3, ReLU, 1× 1
48 R 1× 1, ReLU, 1× 1

48 → 72 R 1× 1, ReLU, 1× 1
72 R 1× 1, ReLU, 1× 1

72 → 10 Classifier Global Mean Pooling

Table 1: RFR-CNN architecture based on [2]. The R blocks are
residuals, where the input is added to the output element-wise. 3×3
and 1 × 1 are different kernel sizes. HS stands for the hard swish
nonlinearity. P stands for a 2 × 2 max pooling and Pf for a 2 × 1
max pooling over the frequency dimension respectively.

To comply with the task regulations, we have adjusted the model
from [2] in two ways:

First, we reduced the width throughout the network. This is due
to minimizing the number of parameters and keeping the receptive
field. Reducing the model complexity was necessary because we
use the model in float16 precision, instead of quantizing it to int8.

Secondly, we have changed the nonlinearity in the first convo-
lutional layer from ReLU to the so-called hard swish as proposed
in [12]. With this swap of nonlinearities, we were able to reduce the
initial set of filters to less than 32 while maintaining similar accu-
racy.
This model consists of 59 804 parameters represented by 16-
bit floating point numbers and needs 14.687 million multiply-
accumulate operations (MACs).
For our second model, we have implemented additional optimiza-
tions. We have substituted the 3 × 3 convolutions from the second
and third R-Block with depthwise separable convolution to achieve
this. This technique, used in Howard et al. [13], has helped us get
the model complexity down to 43 580 parameters, and 10.819 mil-
lion MACs.

3.2. S4 model

The structured state-space sequence model (S4) was introduced by
Gu et al. [3] as a new sequence-to-sequence model for modeling
long-range dependencies. The model is based on the fundamen-
tal state space model (SMM) x′(t) = Ax(t) + Bu(t), y(t) =
Cx(t)+Du(t), and is initialized with a special state space matrix A
which enables the model as a viable option for sequence modeling.
Further development of the model also introduces an algorithm to
unroll the recurrence of the model over time, resulting in a kernel.
Therefore the model can also be seen as a convolution with a global
kernel over the sequence length, resulting in efficient computation

both in computational and memory complexity. For a more in-depth
explanation of the model, we would like to refer the reader to the
original paper [3]. One motivation for adapting this model was the
promising results on a subset of the Speech Command dataset [14]
with an accuracy of 93.96% [3]. Our first experiments on the TAU
Urban Acoustic Scenes 2022 Mobile development dataset [6] con-
firmed that the model has the capacity to fit the training data, leading
to good training loss but strong over-fitting.
Firstly, a CNN layer extracts 16x16 patches of the Mel-spectrogram
with an overlap of 12 and projects it to the feature space of the se-
quence, similar to how it is done in Vision Transformers [15]. This
is followed by a stack of S4 blocks, global mean pooling over the
sequence length, and a linear projection to the class predictions.
The original S4 block consists of a Layernorm, an S4 layer, a Lin-
ear layer, and a skip connection between input and output. With the
goal to reduce over-fitting and as well as shrink the model size, we
propose the following changes to the model:

• We adapted Liquid-S4, a variant of the original S4 model, for
better generalization [16]. This variant introduces an input-
dependent state transition model, which makes it adaptive dur-
ing inference.

• Similar to MobileNets [17], we swapped the Linear layer in
the S4 block, with a point-wise convolution. Since the S4 layer
can be seen as a depth-wise separable convolution, the idea and
effects are very similar as in MobileNets.

• For better generalization, we introduced Mixup with α = 0.3
for data augmentation. We also experimented with Freq-
MixStyle, but Mixup worked the best.

• We also fine-tuned different hyperparameters, especially the δt
max and min, as well as l max ,which controls the effective

size of the kernel [3], had a high impact.
• We also switched the initialization strategy of A from ”LegS”,

which is suited for modeling long dependencies to ”FouT”,
which is better at memorization tasks [3].

Since training the model in half-precision decreased the accuracy
by 8%, we keep the full-precision for both training and inference,
increasing the model’s memory complexity. For the bigger S4-1
model, we use a base channel size W = 80, and for the smaller S4-
2 model, we use a base channel size of W = 48. The final model
structure can be seen in Table 2

OUT CHANNELS BLOCK CONFIG

W CNN 16x16, S12

W/2 S4 PC, W → W/2

W/2 S4 PC, W/2 → W/2

W/2 S4 PC, W/2 → W/2

Global Mean Pooling
Classifier W → 10 Classes

S12: stride 12
PC: point-wise convolution

Table 2: S4 architecture
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Baseline RFR-CNN-1 RFR-CNN-2 S4-1 S4-2
Scene label Accuracy Log loss Accuracy Log loss Accuracy Log loss Accuracy Log loss Accuracy Log loss

Airport 39.4 1.534 43.7 1.489 41.2 1.578 43.6 1.334 34.8 1.487
Bus 29.3 1.758 67.6 0.982 56.7 1.225 44.5 1.618 41.9 1.642
Metro 47.9 1.382 46.4 1.402 42.1 1.490 43.5 1.483 43.4 1.555
Metro station 36.0 1.672 49.5 1.441 51.4 1.379 35.7 1.814 27.5 1.963
Park 58.9 1.448 80.9 0.724 77.0 0.823 73.3 0.992 73.3 0.988
Public square 20.8 2.265 36.3 1.749 37.0 1.731 19.4 2.124 16.6 2.027
Shopping mall 51.4 1.385 51.7 1.356 58.7 1.231 61.0 1.113 62.6 1.083
Street, pedestrian 30.1 1.822 37.4 1.698 34.8 1.758 28.4 1.926 31.9 1.749
Street, traffic 70.6 1.025 77.4 0.776 75.8 0.840 74.0 0.933 75.7 0.893
Tram 44.6 1.462 61.5 1.183 60.4 1.181 43.2 1.620 43.5 1.705

Overall 42.9 1.575 55.2 1.280 53.5 1.323 46.7 1.496 45.1 1.509

MACs 29.23 14.69 10.82 0.57 0.21
Model Size 46.512 119.608 87.160 116.008 63.976

Table 3: Results for baseline and submitted models on the given evaluation dataset. Accuracy in %. MACs in million. Model size in KB.

4. EXPERIMENTS AND RESULTS

4.1. Training and test dataset

In all our experiments we used the DCASE 2023 challenge task 1
split for training/validation/testing. Each sample belongs to one of
12 European cities, 3 real (A, B, C) or 6 simulated devices (S1-
S6), and to one of 10 different acoustic scenes, including ”airport”,
”bus”, ”metro”, ”metro station”, ”park”, ”public square”, ”shop-
ping mall”, ”street pedestrian”, ”street traffic”, and ”tram”. The
simulated devices S1-S6 are generated by using measured impulse
responses and applying range compression to recordings of device
A. Each sample has a length of one second.

4.2. Training details

For both RFR-CNNs, we apply the Adam optimizer with a learning
rate schedule and train for 60 epochs. The learning rate is exponen-
tially increased to 0.001 in a warmup phase of 5 epochs and after
19 epochs it is then linearly decreased to 1e-5 within 10 epochs.
We use a weight-decay of 0.003 and a mini-batch size of 256. For
the Freq-MixStyle we set p = α = 0.3.

For the S4 models, we also apply the Adam optimizer with a
learning rate schedule and train for 50 epochs. The learning rate
is exponentially increased to 2e-4 in a warmup phase of 5 epochs
and after 19 epochs it is then linearly decreased to 2e-5 within 10
epochs. We use a weight-decay of 0.0005 and a mini-batch size of
64. For the Mixup we initialize α = 0.3 for the bigger model S4-1
and α = 0.2 for the smaller S4-2.

We trained our models for the final submission on the whole
development dataset. The energy consumption of training and
inference are reported in table 4.

4.3. Results

Table 3 presents the results of our experiments, which compare the
performance of different models on the given evaluation dataset.
The table includes accuracy and log loss for each scene label, as
well as the overall accuracy and log loss for all scenes. Additionally,

Model Training Inference

Baseline 2.806 0.045

RFR-CNN-1 2.964 0.048

RFR-CNN-2 2.431 0.047

S4-1 1.242 0.011

S4-2 1.136 0.010

Table 4: Energy consumption for submitted models in kWh.

the table displays the number of Multiply-Accumulates (MACs) in
million and the model size in KB for each model.

Overall, the RFR-CNN-1 model achieves the highest accuracy
(55.2%) and the lowest log loss (1.280). Furthermore, the S4-
2 model has the lowest model size (63.976 KB) and requires the
fewest MACs (0.21 million). It is also worth noting that some mod-
els perform better for specific scene labels than others, even though
the overall accuracy differs significantly. For instance, the Metro
scene has the highest accuracy (47.9%) and the lowest log loss
(1.382) with the Baseline model. The Park scene has the highest
accuracy (80.9%) and the lowest log loss (0.724) with the RFR-
CNN-1 model.

5. CONCLUSION

Our submission for the DCASE 2023 consists of two different ap-
proaches. The first approach is an adaption of the model used in the
winning approach of DCASE 22 Task 1. We changed the ReLU ac-
tivation in the first convolutional layer to Hard swish and decreased
the model complexity by reducing the width of the network. With
those settings we were able to beat the baseline accuracy by more
than 10% with the drawback of a higher amount of 59804 param-
eters, resulting in 119.6 KB (16-bit float) model size and 14.687
MMACs, still below the DCASE task requirements. Additionally,
we utilized depthwise separable convolution in our approach, result-
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ing in a significant reduction in model complexity while maintain-
ing a high level of accuracy. For the S4 approach, we introduced
multiple regularization methods to deal with over-fitting. Due to
the parameter efficiency and the rather low MAC count, we aimed
to design a more efficient model compared to the baseline, while
still beating its accuracy score. For future work, we could imagine
different already established methods like Knowledge Distillation,
Pruning, and Quantization to further lower the model complexity
and improve accuracies.
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