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ABSTRACT

In this report, we present our method for Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) 2023 chal-
lenge task3: Sound Event Localization and Detection Evaluated in
Real Spatial Sound Scenes. We propose a method based on Omi-
dimensional dynamic convolution (ODConv) and Feature Pyramid
Attention Module (FPAM). In order to enhance the ability of ex-
tracting features for convolution kernel, we introduce an attention
mechanism to it along four dimensions in ODConv. In addition, we
explore FPAM to recalibrate high-level features from Residual Omi-
dimensional Dynamic Convolution (Res_ODConv) blocks, making
the model pay more attention to significant positions and channels.
We also design Bidirectional Conformer to realize modeling context
information in time and frequency dimensions. On Sony-TAu Real-
istic Spatial Soundscapes 2023 (STARSS2023) dataset, our system
demonstrates a prominent improvement over the baseline system.
Only the first-order ambisonics (FOA) dataset was considered in
this experiment.

Index Terms— DCASE2023, Sound source localization,
Sound event detection, Omi-dimensional dynamic convolution,
Feature pyramid attention module

1. INTRODUCTION

Sound event localization and detection task is aimed at detecting oc-
currences of sound events belonging to specific target classes, track-
ing their temporal activity, and estimating their direction-of-arrival
or positions during it. Given multichannel audio input, a sound
event localization and detection (SELD) system outputs a tempo-
ral activation track for each of the target sound classes, along with
one or more corresponding spatial trajectories when the track in-
dicates activity. This results in a spatio-temporal characterization
of the acoustic scene that can be used in a wide range of machine
cognition tasks.

Sound event localization and detection task can be divided into
two parts: Sound Event Detection (SED) and Sound Source Lo-
calization (SSL). Many classical frameworks for SED and SSL are
parametric approaches. Recently, many methods based on deep
neural network (DNN) have been greatly applied in SELD task.
They were shown to improve the robustness of SSL in challenging
conditions compared to traditional methods. Among deep learn-
ing models, different architectures have been proposed: convo-
lutional neural networks (CNNs)[1], convolutional recurrent neu-
ral networks (CRNNSs)[2][3], U-net architectures[4], autoencoders
(AEs)[5] or attention-based neural networks[6].

In order to improve the performance of overlapping sound
events localization and detection, a track-wise output format was
proposed[7], and the types of sound events output by each trajec-
tory were different. To further simplify the output format, multi-
ACCDOA was proposed[8], this method uses a single-ACCDOA
vector that represents the activity of sound events and their posi-
tional information in each track. Multi-ACCOA is an extension of
single-ACCDOA in the trajectory dimension.

The Attention mechanism has emerged as a promising alterna-
tive to model temporal dependencies. Attention efficiently learns
the interdependencies of elements (e.g.vectors) between two se-
quences. SALADNET][9] proposes to replace the bidirectional long
short-term memory (BiLSTM) layers of a state-of-the-art CRNN
with one or several self-attention encoders. By avoiding the re-
current layers, the proposed model lends themselves to parallel
computing, which is shown to produce considerable savings in ex-
ecution time. The Conformer architecture was first proposed in
ASR, which has shown the superiority of self-attention. In Resnet-
Conformer network[10], the convolution layers are effective in ex-
tracting local fine-grained features, while the transformer models
are good at capturing long-range global context. It also proves that
SELD task by use of self-attention can also get outstanding perfor-
mance.

In this paper, the attention mechanism also plays an important
role in the network. Firstly, we introduce Omi-dimensional Dy-
namic Convolution[11], which applies attention mechanism like SE
to convolution operation along spatial, input channel, and filter di-
mensions to enhance the ability of extracting features for convo-
lution kernel. Secondly, we propose a Feature Pyramid Attention
Module[12], a combination of Channel Attention and Spatial Atten-
tion, further recalibrating the features at different resolutions from
previous layers. Thirdly, inspired from[13], we design a novel Bidi-
rectional Conformer for modeling temporal context, considering the
time and frequency dimensions in it. We conduct experiments on
the development dataset to verify the effectiveness of our proposed
method.

This paper is organized as follow: we will introduce the pro-
posed method in Section II. The experiment setup will be stated
in Section III. The development results compared with the baseline
method will be described in Section IV. Finally, we draw a conclu-
sion and future work in Section V.
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2. PROPOSED METHOD

We propose an architecture based on Omi-dimensional Dynamic
Convolution and Feature Pyramid Attention Module, and our
method achieves good performance in SELD task in real spatial
sound scenes. The input to the method is multichannel audio, and
the logmel spectrogram was extracted as input feature. We use a
track-wise output format in the representation of multi-ACCDOA
(a class- and track-wise output format). This network produces the
temporal activity and DOA trajectory for each track. Meanwhile,
we adopt ADPIT for the training process as the solution of the track
permutation problem. Our proposed architecture is composed of a
feature extraction module, a feature recalibration module, and Bidi-
rectional Conformer. This is followed by two fully connected lay-
ers. The network diagram is presented in Fig.1.
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Figure 1: Diagram of our model.

2.1. Feature Extraction Module

In the feature extraction module, we preprocess the input features by
two traditional convolution layers, each of which consists of vanilla
convolution operation, batch normalization operation, and GELU
activation function. After the feature is convolved, the average pool-
ing is used to realize the preliminary downsampling. The feature
extraction module makes input features sparse, increases the num-
ber of channels to achieve high-dimensional mappings of features,
and facilitates the next step of more refined feature extraction.

2.2. Feature Recalibration Module

To obtain high-level features containing more context informa-
tion, we design a feature recalibration module. The module in-
cludes two parts: Residual Omi-dimensional Dynamic Convolu-
tion (Res_ODConv) blocks and Feature Pyramid Attention Module
(FPAM). Res_ODConv plays a role of extracting high-level features.
FPAM refines features from five Res_ODConv blocks to aggregate
features across different resolutions.
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2.2.1. Residual Omi-dimensional Dynamic Convolution Block

A vanilla convolutional layer has only one static convolution ker-
nel applied to all input samples. For dynamic convolution, it dy-
namically weights n kernels based on the attention mechanism.
The weights of the convolution kernels are calculated linearly from
the attention function conditioned on the input. However, pre-
vious researches on dynamic convolutions, such as DyConv[14],
CondConv[15], only assigns an attention scale to the weight ma-
trix of the convolution kernel, and the weight of each filter shares
the same attention weight for all inputs. In a word, the previous
dynamic convolutions ignore the spatial, the input channel , and the
output channel dimensions, which leads to a coarse utilization of the
kernel space when they design the attention mechanism that endows
the n convolution kernels with dynamic properties.

Inspired by the above problems, Omi-dimensional Dynamic
Convolution (ODConv)[11] introduces a multi-dimensional atten-
tion mechanism and uses a parallel strategy to learn different at-
tention values of convolution kernels along the four dimensions of
convolution kernel space. The ODConv can be expressed by the
following formula:

y:Z(awiG)afiGOKCi@asi@Wi)*l‘ (D
1

The attention weights acs, e, oy are calculated along the spa-
tial, the input channel, and the output channel dimensions of the ker-
nel space for the convolution kernel W respectively. The attention
weight oy, assigns different weights to n convolution kernels. In this
paper, we only use one convolution kernel, so a,=1. This type of
multi-dimensional attention mechanism greatly enhances the ability
of feature extracting for convolution kernel.

When extracting high-level features, we use the basic block
with two ODConv layers followed by average pooling. We also
introduce a residual structure[16] after each layer of ODConv to re-
tain the original information and reduce the possibility of gradient
disappearance.

2.2.2. Feature Pyramid Attention Module (FPAM)

After high-level feature extraction, the features need to be refined.
Inspired by[12], we feed the output of each Res_ODConv block into
Feature Pyramid Attention Module (FPAM) at the same time. Be-
cause the output size of each block is different, we call this atten-
tion mechanism Feature Pyramid Attention. FPAM mainly consists
of Spatial Attention Module (SAM) and Channel Attention Module
(CAM). The overall structure of FPAM is shown in Fig.2. The out-
puts of five Res_ODConv blocks are firstly convolved to have the
same number of channels and then sent to the SAM respectively.
The SAM assigns different weight values to every spatial position
of each feature. The weight matrixes are calculated using the fol-
lowing formula:

w = o(Conv7_7(Concat(MaxPool(x), StdPool(x)))) (2)

SAM is composed of global max pooling, global standard pool-
ing, and a convolution layer with a convolution kernel size of 7x7.
The operations of pooling calculate the various statistical character-
istics of the features, and the pooled feature are concatenated into
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Figure 2: The overall structure of FPAM.

a convolution layer to halve the number of channels, which is con-
venient for multiplying them with the original features. The con-
volution output is activated by the Sigmoid function to obtain the
attention values of each spatial position in the feature.

The features of different sizes after spatial refinement are up-
sampled and downsampled respectively to ensure that all features
have the same size. Then, the features from five layers at diverse
resolutions are concatenated for the shuffle operation to be mixed.
In order to ensure the number of channels is consistent with the
original features, we reduce the number of channels by convolution
operation with the convolution kernel size of 1x1.

The features after spatially refined processing and accuracy
mixing contain more information, and then the refined features are
fed into the CAM for further recalibration. The internal structure of
CAM is shown in Fig.3.

When calculating channel attention, similar to spatial attention,
the global max pooling and global average pooling of features are
carried out at first. We believe that the two pooling operations play
individual role in the process of seeking attention. Therefore, two
parameters that can be learned are designed to select the two pooled
features adaptively and make a weighted summation. It is seen as
an adaptive mechanism. The added features also pass through the
Sigmoid function. Thus the channel attention weights are obtained
and assigned to channels of the original features.

Through the above series of operations, features acquire more
attention weight in some important spatial positions and channels.
During training, the network will give more attention to these fea-
tures. This is the main purpose of feature recalibration in FPAM.
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Figure 3: The details of CAM.
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Figure 4: The global architecture and internal composition of
Bidirectional Conformer.

2.3. Bidirectional Conformer

When we get recalibrated high-level features, we reshape them by
multiplying frequency and channel dimension. In order to avoid the
complexity of the model, we cut the number of channels in half be-
fore multiplying. Then, the Bidirectional Conformer module is sent
for time context modeling to simulate the time structure of sound
events. The specific structure is shown in Fig.4.

Bidirectional Conformer calculates attention along time and
frequency dimensions by frequency-level Conformer and frame-
level Conformer. Each Conformer includes two forward feedback
layers, Multi-head Self-attention (MHSA) and ConvModule. Espe-
cially, the last forward feedback layer contains BiGRU and a linear
layer. Similar to the Conformer structure, we also use the “mac-
aron” structure, with two attention modules sandwiched between
two forward feedback layers. At the end of each module in a single
Conformer, the layer normalization operation is carried out, and the
residual structure is introduced to retain the original information.
Each Conformer is finally followed by a group normalization layer,
which is added with the original features as the output of the next
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layer. Bidirectional Conformer considers global and local infor-
mation in two dimensions, respectively. MHSA is used to realize
long-range sequence modeling, and ConvModule with kernel size
of 31x31 achieves the function of obtaining local feature attention.

The features of time modeling through two Bidirectional Con-
former layers are sent to the two fully connected layers, and the last
fully connected layer outputs multi-ACCDOA vectors to represent
the active state and corresponding position information of sound
events, thus completing the classification and positioning task of
sound events.

3. EXPERIMENT SETUP

3.1. Dataset

The Sony-TAu Realistic Spatial Soundscapes 2023 (STARSS23)
dataset contains multichannel recordings of sound scenes in var-
ious rooms and environments, together with temporal and spatial
annotations of prominent events belonging to a set of target classes.
Detailed information can be found in [17], we also use synthetic
recordings generated through convolution of isolated sound sam-
ples with real spatial room impulse responses (SRIRs) in DCASE
2022 as external data to train our system.

3.2. Evaluation metrics

To evaluate SELD performance, we used the official evaluation
metrics[18] that were introduced in the 2022 DCASE Challenge as
our default metrics. The evaluation metrics of SELD can be divided
into SED metrics and DOA metrics individually. For SED task, we
use location-dependent error rate £ Rapo and Fl-score Fapo. Con-
trary to the previous challenges, in this challenge we perform micro
averaging of the location-dependent F1-score, an ideal method will
have an F1-score of one and ER of zero. A DOA method is eval-
uated using a class-dependent localization error L Ecp, which is
computed as the mean angular error of the matched true positives
per class. In addition, we compute a localization recall LRcp met-
ric per class to describe the performance of DOA. Similar to SED
metrics, a good method will have an LR of one and LE of zero in
the ideal case.

3.3. Training procedure

The sampling frequency was used at 24 kHz in our method. STFT
was applied with configurations of 20 ms frame length and 10 ms
frame hop. We use a batch size of 64.When extracting logmel spec-
trogram, we set the number of frequency bins is 128. With the
aim of ensuring a fair comparison, all models were trained for 300
epochs with the Adam optimizer of the same initialized parameters
by early stopping strategy.

3.4. Our challenge submissions

4. RESULT AND DISCUSSION

Our proposed model results outperform the DCASE 2023 baseline
model, Ma_X]JU_task3a_1 achieve the improvement of 3.7, 10.5%

Challenge

Table 1: The performance comparison for different methods on the
development dataset.
method E Rspo ono% LEcp LRcD%
DCASE2023baseline | 0.69  42.7 29 52.8
Ma_XJU_task3a_1 0.69 364 253 633

in LEcp and LRcp. The result of the baseline is acquired by
ourselves. Our methods have outstanding improvement in LRcp,
but the metric of Fspo is lower than the baseline. There is still
potential for our model to realize greater improvement.

5. CONCLUSIONS

In this paper, we propose a SELD method based on Omi-directional
Dynamic Convolution (ODConv) and Feature Pyramid Attention
Module (FPAM). The ODConv was designed to enhance the abil-
ity of extracting features for convolution kernel and kernel weights
can be dependent on input dynamically. The FAPM in the high-
level feature extraction stage was designed to pay more attention to
significant positions and channels. The results on the development
dataset show that our proposed method outperforms the baseline
method. In the future, we will explore more innovative methods to
improve the performance of the model.
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