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ABSTRACT 

Spectro-Temporal Receptive Field (STRF) is a linear function 
which describe the relationship between sound stimulus and pri-
mary auditory cortex (A1) neural response within human auditory 
system. By means of convolution with sound spectrogram and 
STRF, we could simulate the A1 cell response which reacts to 
spectral and temporal modulation information of sound. By ap-
plying STRF, we expect SED model to detect sound events as hu-
man auditory system does. In this work, we used STRF as a kernel 
in convolutional layer and construct the two-branch deep learning 
model. One branch using STRF extracts the neuroscience-in-
spired spectro-temporal modulation information. The other is va-
nilla CNN branch which extracts complementary time-frequency 
information of input spectrogram those are missed by the STRF 
branch. TB-STRFNet, the proposed two-branch model, outper-
forms the baseline by 6.8% in terms of F1 score with optimum 
threshold per class. 

Index Terms— Sound event detection, auditory system, 
STRF, spectral and temporal modulation 

1. INTRODUCTION 

Sound event detection (SED) is a task for recognition of occurring 
polyphonic sound events and their respective timing [1-4]. As hu-
man percepts multiple sound events spontaneously, possibility for 
development of sound event detection may lie on the characteristic 
of human auditory system. However, the characteristic of auditory 
system is yet to be totally comprehensible. As a role of each com-
ponent inside human auditory system is entangled with other com-
ponents, detailed mechanism behind the whole system are unclear. 
To understand the opaque characteristic of auditory system, many 
studies are still ongoing [5-7]. 

One of the efforts to understand auditory system is spectro-
temporal receptive field (STRF) [8]. Neurons in auditory system 
represent various stimulus dependent properties [9]. STRF of a 
neuron reflects those spectral and temporal properties of sound 
stimulus that influence the firing probabilities of specific neuron 
[10]. Eggermont et al. [11] has revealed that neuron response can 
be predicted by convolution of STRF and spectrogram which rep-
resents both spectral and temporal properties of sound simultane-

ously. Primary auditory cortex (A1) is first relay station for audi-
tory information and makes sense of information which is pro-
cessed at multiple preceding stages in auditory system [6]. Higher  
hierarchy information such as sound event is also processed in A1, 
and it helps human to percept multiple sound events spontaneously. 
A1 neuron response can also be predicted by convolution of A1 
STRF and sound stimulus.  

STRF, which is used to predict A1 response, can be either 
estimated or constructed. Estimation methods include reverse cor-
relation [11], boosting [12] and machine learning method such as 
support vector machine (SVM) [13]. On the other hand, STRF can 
be constructed by observing physiological data. Chi et al. [14] pro-
posed STRF construction method by considering that A1 neurons 
are very sensitive to dynamic modulation of sound which is very 
important for speech intelligibility. Constructed STRF by Chi et 
al. [14] is used to various tasks requiring reproduction of human 
auditory system [15-17]. Especially, Vuong et al. [15] used STRF 
as kernel of deep learning model’s convolutional layer. Recently, 
various deep learning models and methods are proposed for better 
performance of SED, and they aim to resemble working principle 
of human auditory perception behaviors [4, 18-20]. However, 
method using STRF as a kernel of convolutional layer has not been 
yet utilized in SED. 

In this work, we adopted STRF construction method by Chi 
et al. [14] and STRF kernel method by Vuong et al. [15] to apply 
STRF on SED. We proposed two-branch model, TB-STRFNet, in 
which one branch extracts spectro-temporal modulation of sound 
input using STRF and the other branch extracts complementary 
time-frequency information with vanilla convolution module. TB-
STRFNet outperformed baseline by 6.8% in terms of F1 score with 
optimum threshold per class [21].  

2. METHODS 

2.1. STRFConv 

A convolutional layer whose kernel is constructed STRF is named 
as STRFConv in [15]. STRF filter is constructed with two param-
eters which are scale (Ω) and rate (ω), respectively. STRF exam-
ples which change along with scale and rate are shown in Figure 
1. 
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Axes of STRF represents time, and frequency range for x-
axis, and y-axis, respectively. Given that STRF is centered at its 
center frequency (CF) [14], STRF is centered at its 1CF. Addi-
tionally, as observed in physiological data [22, 23], STRF fre-
quency range is more than about 2 octaves which is from 0.5CF 
to 2CF. From first column to third column, scale gradually in-
creases while rate is fixed. As scale increases, spectral spacing of 
ripple gets narrower while temporal spacing is constant. While 
high scale STRF represents spectrally narrow-tuned neuron char-
acteristic, low scale STRF represents spectrally broad-tuned neu-
ron characteristic. In contrast, from first row to third row, rate 
gradually increases while scale is fixed. As rate increases, tem-
poral spacing of ripple gets narrower while spectral spacing is 
constant. While high rate STRF represents impulse-reactive neu-
ron characteristic, low rate STRF represents prolonged-duration 
reactive property of neuron. 

STRF is constructed with scale and rate as parameters to 
mimic spectro-temporal variously-tuned neuron characteristic. 
STRFConv utilizes various STRF as a kernel of convolutional 
layer to reflect those variously-tuned neuron characteristic inside 
auditory system, and it use scale and rate as learnable parameters 
to adjust STRF for given task. 

2.2. TB-STRFNet 

Proposed TB-STRFNet is an SED model which consists of two 
branches. The model structure of TB-STRFNet is depicted in Fig-
ure 2. Input for each branch is the same mel-spectrogram. Both 
branches are composed of a convolutional layer followed by six 
convolution blocks. One branch adopts its first layer by STRF-
Conv while the other adopts vanilla convolution. 64 STRF kernels 
are used in STRFConv. whereas half of kernels are down direction 
STRF which capture decreasing spectral modulation as time 
passes and the other half are upward direction STRF which cap-
ture increasing spectral modulation as time passes. Downward 
and upward direction STRF is shown in Figure 3(a) and 3(b), re-

spectively. The following convolution blocks consist of 2d con-
volutional layer, batch normalization, ReLU activation and 2d 
maxpool layer.  

The STRF branch, which includes STFRConv, extracts neu-
roscience-inspired modulation information by its STRF kernel so 
that SED model could extract sound event information in a way 
similar to human auditory system. On the other hand, the Vanilla 
branch composed of only vanilla convolutional layers extracts 
complementary sound event information that might be missed by 
STRF branch. Extracted feature map from two branches are con-
catenated and go through remaining layers which are composed 
of two Bi-GRU layers and two fully connected layers. 

2.3. Implementation Details 

Mel-spectrogram is used as input feature, by 44.1kHz sampling 
rate, 8,820 hop size, 17,640 window length and 64 mel-bin. For 
training, epoch number is 150, batch size is 32, mean-square error 

Figure 1: Examples of STRF kernels in STRFConv. 
 

Figure 2: A structure of TB-STRFNet.  

Figure 3: (a) Downward direction STRF (b) Upward direction 
STRF. 
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for loss function and Adam optimizer are used.  5 cross-fold vali-
dation setup is used for stable overall evaluation. Soft labeled data 
are used for training [24], whereas hard labeled data are used for 
test. All evaluation metrics are segment-based calculated by 1-sec 
time resolution. Micro-average error rate (ER), micro-average F1 
score (F1m), macro-average F1 score (F1M) and macro-average F1 
score with optimum threshold per class (F1MO) are used for eval-
uation metrics [21].  
 

3. RESULTS 

Total four systems are submitted for evaluation DCASE Task 4 
subtask B. A test result for each submission is represented in Table 
1. 5 cross-fold validation is used that 5 best models are created for 
each session. Test result is based on created 5 best models. 

System 1 is single-best TB-STRFNet without ensemble. Sys-
tem 1 result is only based on one session in which 5 best models 
are created due to 5 cross-fold validation. System 1 performs the 
best performance with 6.8% increase compared to the baseline 
about F1MO which is the main metric of the task. System 2 is TB-
STRFNet with ensemble which utilizes six sessions that is total 
thirty models. System 2 used average decision-making method for 
ensemble. System 3 is TB-STRFNet with global embeddings of 
AST, which utilizes external dataset. It is only based on one ses-
sion that no ensemble is used. The size of global embeddings of 
AST is 256. Embeddings are concatenated with extracted feature 
from basic branch and STRF branch in TB-STRFNet. System 4 is 
TB-STRFNet with global embeddings of AST and ensemble. Av-
eraging is also used for decision-making method while ensemble 
of system 4. 
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