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ABSTRACT

This paper presents our approach to Task 4b of the Detection and
Classification of Acoustic Scenes and Events (DCASE) 2023 Chal-
lenge, which focuses on Sound Event Detection with Soft La-
bels. Our proposed method builds upon a CRNN backbone model
and leverages the benefits of data augmentation techniques to im-
prove model robustness. Furthermore, we introduce self-attention
mechanisms to capture global context information and enhance the
model’s ability to predict soft label segments more accurately. Our
experiments demonstrate that incorporating soft labels and self-
attention mechanisms result in significant performance gains com-
pared to traditional methods on data varying across different scenar-
ios.

Index Terms— Sound event detection, Soft labels, Self-
attention, convolutional recurrent neural network (CRNN)

1. INTRODUCTION

The detection of sound events is a fundamental task in audio signal
processing with various applications. One of the main challenges
in sound event detection is the availability of labeled training data,
which is often difficult and expensive to obtain. The Detection and
Classification of Acoustic Scenes and Events (DCASE) 2023 Chal-
lenge Task 4b aims to evaluate the performance of sound event de-
tection systems that use soft labels for training, participants are ex-
pected to develop systems that leverage various machine learning
techniques and architectures.

Soft labels [1] provide more informative annotations compared
to traditional binary labels by characterizing the certainty of human
annotators for the presence of a sound event at a specific time. The
provided soft labels in Task 4b are continuous values between 0 and
1, with a temporal resolution of 1 second. Systems developed in
Task 4b will be evaluated against hard labels, which are obtained by
thresholding the soft labels at 0.5. Anything above 0.5 is considered
1 (sound active), and anything below 0.5 is considered 0 (sound
inactive).

2. DATASET

The Detection and Classification of Acoustic Scenes and Events
(DCASE) 2023 Challenge Task 4b provides a dataset called MAE-
STRO Real for the development of sound event detection systems
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using soft labels. The dataset consists of real-life recordings with a
length of approximately 3 minutes each, captured in different acous-
tic scenes to ensure the diversity of the data. The audio was an-
notated using Amazon Mechanical Turk, which is a platform that
enables crowd-sourced annotations from multiple annotators [2].

The dataset is provided with a 5-fold cross-validation setup in
which approximately 70% of the data (per class) is used in training,
and the rest is used for testing. Out of the 17 sound classes present in
the provided dataset, only 15 have values exceeding 0.5, and among
those, 4 are very infrequent. Therefore, during our model training
experiments, we focused solely on the 11 most prevalent classes.

An intriguing characteristic of the dataset under consideration
is its composition, sourced from five distinct scenarios, with each
scenario featuring only a subset of the total 17 classes. Thus, a
comprehensive understanding of the audio scenario at hand alone
can yield valuable insights into the predictive outcomes.

The system evaluation uses the macro-average F1 score with
optimum threshold per class (F1MO) metric, calculated in 1-second
segments. The F1MO score is based on the best F1 score per class
obtained with a class-specific threshold, providing a comprehensive
system performance assessment.

3. RELATED WORK

Sound event classification is an active area of research with a vari-
ety of techniques proposed in recent years. One approach that has
shown promise is the use of Convolutional Recurrent Neural Net-
works (CRNNs) with various augmentation techniques. For exam-
ple, the Forward-Backward CRNN pseudo-labeling approach and
Bidirectional CRNN have been used for sound event detection with
success [3], but rely on sharply marked start and end annotations.

Other modifications to above techniques that have been pro-
posed include Mean-Teacher Models [4], which use a teacher-
student approach to improve model generalization, and SK-CRNN
[5], which utilizes a residual connection to improve the learning
process. Frequency dynamic convolution (FDY) [6] has been pro-
posed to remove the problem of frequency shift invariance faced by
standard convolution, however, comes with an increased computa-
tional cost for each basis kernel. Asymmetric focal loss [7] has also
been proposed as a solution to the data imbalance problem in SED.
In terms of model architectures, CRNNs, and pretrained Models
(such as PANNs and SSAST) have been widely used.

The use of time-warping augmentation, such as SpecAugment
[8] has been shown to be effective for increasing robustness to vari-
ations in the duration of sound events. Frameshift, time mask, fre-
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Figure 1: Distribution of classes in the dataset between hard labels
and soft labels.

quency mask, gaussian noise, FilterAugment, ICT, and SCT are also
commonly used augmentation techniques. In one study [5], a com-
bination of mix-up, SpecAugment, and time-frequency shifting was
found to improve performance over a standard EfficientNet-based
mean-teacher model.

In addition to augmentation techniques, incorporating various
types of background noise, such as Gaussian white noise, pure mu-
sic, and other free sounds, has been found to be effective in im-
proving the robustness of sound event detection models. The use of
CRNNs and various augmentation techniques, in combination with
carefully selected loss functions and model architectures, has shown
promise for sound event classification tasks.

4. METHOD

4.1. Data Processing

The steps involved include resampling the data to a standard sam-
pling rate of 16000 Hz and converting stereo audio to mono. The
audio signal is then broken down into small time frames, and a Mel
Spectrogram is calculated using a filter bank to obtain a visual rep-
resentation of the frequency content of the signal. The Mel Spec-
trogram can be computed with different hop sizes to control the
amount of overlap between time frames. Finally, the pre-trained
wav2vec2 [9] model is used to extract embedding features from
each 1-second segment of audio data. These embeddings capture
higher-level characteristics of the audio signal that can be used as
input features for machine learning models.

4.2. Backbone model

Convolutional Recurrent Neural Network (CRNN) combines the
spatial feature extraction capabilities of Convolutional Neural Net-
works (CNNs) and the temporal modeling capabilities of Recurrent
Neural Networks (RNNs). It is widely used for tasks such as video

Figure 2: Architecture Overview for Global Attention CRNN.

classification, object detection, speech recognition, and audio clas-
sification. We rely on the baseline model [10] of the organizers to
improve the accuracy.

The model takes in an audio chunk that includes the primary
target segment that needs to be predicted (Figure 2) and surrounding
audio segments. The output of the model is the probability of each
event occurring in the main segment.

4.3. Self-attention for global scene information

The model pipeline involves using a Global CRNN model to extract
embeddings that represent the entire audio context. These embed-
dings act as the key in the attention mechanism (??). Then, the lo-
cal feature of the predicted segment is extracted using a Wav2Vec2
model or another CRNN, and this is used to form a query. The at-
tention score is then computed by multiplying each audio segment
by the query through additive attention. Based on the resulting at-
tention distribution, the attention output is a weighted sum of all the
context audio segments. In essence, this approach allows the model
to focus its attention on the relevant audio segments while taking
into account the surrounding context.

Q = CRNN/Wav2vec2(audiotarget) (1)

K = CRNN(audiocontext) (2)

Attention Output = softmax (QWq +KWk)V (3)

The attention output is combined with the feature of the seg-
ment that requires event prediction either by concatenation or by a
shift layer norm. This combined feature is then passed through fully
connected layers to predict the event of the 1-second segment.

4.4. Augmentation

SpecAugment is an augmentation technique commonly used in
sound event classification tasks. It applies two types of masking
to the spectrogram: frequency masking and time masking. The fre-
quency masking randomly masks out a continuous frequency band
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Figure 3: CRNN model with self-attention mechanism using wav2vec2 feature as query.

by setting the corresponding spectrogram coefficients to zero. The
time masking randomly masks out a continuous time segment by
setting the corresponding spectrogram coefficients to zero. In our
experiments, the number of masks applied is set to 2. The hyperpa-
rameters freq masking and time masking are set to 0.15 and 0.20,
respectively, which means that on average, 15% of the frequency
band and 20% of the time segment are masked out.

Audio waveform augmentation is also used for the purpose of
adding variety to the training data and improving the robustness of
the model. One of the methods used is pitch augmentation, which
alters the pitch of the audio by scaling the frequency axis. Another
method is clipping augmentation, which simulates audio clipping
by truncating the waveform. The third method is reverb augmenta-
tion, which adds simulated reverberation to the audio waveform.

We also use a balanced sampler1 for the data loader to achieve a
balanced distribution by randomly undersampling the majority class
and oversampling the minority class.

4.5. Focal Loss

Focal Loss [11] is a modified version of cross-entropy loss that is
designed to address the class imbalance in classification tasks. It as-
signs higher weights to misclassified examples of the minority class,
thereby focusing the learning process on hard-to-classify examples.
The formula for Focal Loss is:

FL(pt) = −a(1− pt)
γ log(pt) (4)

1https://github.com/khornlund/pytorch-balanced-sampler

where p is the predicted probability of the correct class, and γ
is a user-defined parameter that adjusts the degree of focusing.

To address the issue of imbalanced data, we employed the use of
focal loss in our approach. This allowed us to effectively calculate
error predictions against soft event label targets. Additionally, we
utilized cross-entropy to account for scene loss for local features.

Losstotal = FL(predictionevent, targetevent)

+ CE(predictionscene, targetscene)

5. EXPERIMENTAL RESULTS

5.1. Self-Attention CRNN Architecture

We tested the proposed methods on the development dataset and
evaluated them using the F1 Macro Optimized metric. The results
presented in the table indicate that the length of the input chunk has
an impact on the accuracy of the model. Specifically, increasing the
input size leads to higher accuracy.

Based on the experimental results, we find that using wav2Vec2
used as query feature extraction is less effective than using a simple
CRNN model, this pre-trained audio needs to be fine-tuned with
even more event audio data.

5.2. Augmentation and Balanced Sampler

By leveraging augmentation techniques for both waveform and
spectrogram data, the accuracy of the model can be improved signif-
icantly by approximately 2%. Additionally, utilizing a balanced al-
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Mean Prediction Hop Size Chunk Size Augmentation Balanced Sampler F1MO dev
. . . - - Baseline = 44.13%
✓ 800 1s ✓ - 38.0%
✓ 3200 1s - - 39.2%
- 3200 1s - - 41.1%
- 3200 5s - - 43.6%
- 3200 41s - - 44.2%
- 3200 41s ✓ - 46.2%
- 3200 41s ✓ 0.5 46.7%

Table 1: Experimental results for the proposed methods on the development Set.

Figure 4: Visualization of the focal loss for training and validation
set of 5 folds.

Figure 5: t-SNE visualization of sound event embeddings generated
by our proposed method.

pha that is appropriate for the model’s configuration can further en-
hance its performance. After experimenting with different balance
weights, we found a ratio that improved F1MO score by around
0.5%. Striking a balance in the alpha value is crucial, as using too
much or too little can negatively affect the model’s accuracy.

5.3. TSNE Visualization and Loss plots

We extract event embeddings before the final linear layer of the
model and subsequently visualize them using t-SNE. In Figure 5,
it becomes evident that the majority of classes are densely concen-
trated in clusters, whereas the minority of classes are sparsely dis-
tributed.

Figure 4 shows that a decrease in the training loss does not cor-
respond to a decrease in the validation loss, which fluctuates signif-
icantly. These observations suggest that the model is unstable and

has not fully captured the distinctive features of sound events.

6. CONCLUSION

In conclusion, the proposed method for Sound Event Detection with
Soft Labels builds upon a CRNN backbone model and utilizes data
augmentation techniques to enhance model robustness. The intro-
duction of self-attention mechanisms further improves the model’s
accuracy by capturing global context information. The experimen-
tal results on the development set indicate that incorporating soft
labels and self-attention mechanisms leads to performance improve-
ments compared to the baseline methods. Further experimentation
is necessary to determine the optimal hyperparameters and config-
uration for this proposed method.
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