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ABSTRACT

This technical report focuses on the audio-text retrieval model de-
signed for the Detection and Classification of Acoustic Scenes and
Events (DCASE) Challenge 2023 Task 6b. In this task, the objec-
tive is to retrieve 10 audio files from a given dataset based on a given
text query and then sort them according to how well they match the
query. The audio encoder in our model employs Pretrained Audio
Natural Networks (PANNS), which is a pre-trained model from the
AudioSet dataset. We have fine-tuned the encoders using the Clotho
dataset. For the text encoder, we have used transfer learning with
Sentence-BERT, which is based on the Transformer architecture. To
bring audio and text inputs into a joint embedding space, we have
passed them through their respective encoders. We have then em-
ployed contrastive learning for audio-text pairs so that similar pairs
are positioned close together and the other pairs are positioned fur-
ther apart. We achieves 0.245 on mAP10 of text-to-audio retrieval.

Index Terms— Audio Retrieval, Text to Audio Retrieval, Con-
trastive learning

1. INTRODUCTION

Audio retrieval is a cross-modal retrieval task to identify the cor-
responding audio or text when one of them is given as input. It in-
volves generating new representations from different modalities and
mapping them to a shared subspace. The purpose of text-to-audio
retrieval is to get 10 audio files from a specified dataset for each
text query and sort them depending on how well they fit the query.
For instance, given a text query such as ”Loud pops of rain splash-
ing down on the ground ”, the goal of the task is to calculate rele-
vance scores of audio samples with respect to a given caption query
and subsequently sort the audio samples in descending order based
on their relevance scores. [1] investigates the importance of vari-
ous metric learning objectives on the audio-text retrieval task. We
conducted experiments using various combinations of contrastive
learning losses and encoders to evaluate their effectiveness in the
audio-text retrieval task.

2. PROPOSED METHOD

2.1. System Overview

Figure 1 shows the proposed system overview.
The audio and text features are extracted using an audio encoder

and a text encoder, which are then projected onto a unified embed-
ding space. In order to align audio and text inputs within a unified

embedding space, we utilized separate encoders for audio modal-
ity. By passing the audio and text inputs through their respective
encoders, we obtained corresponding representations. To train the
model, we employed contrastive learning techniques on the audio-
text pairs.

Figure 1: Model Architecture

2.2. Audio Encoder

Our model utilizes the Audio Encoder from pre-trained audio neu-
ral networks (Panns) [2], which comprises three different encoders:
CNN14, Resnet38, and Wavegram-logmel-Cnn14. We used the
encoders for the feature extracting of input log-mel spectrogram.
Wavegram-logmel-Cnn14 encoder leverages data from both log
mel spectrograms and time-domain waveforms. This is achieved
through a combination along the channel dimension, allowing the
model to capture complementary information from both representa-
tions.

2.3. Text Encoder

The Text Encoder utilized in our model is Sentence-BERT (SBERT)
[3], which is an enhanced version of the BERT network specif-
ically designed for generating high-quality sentence embeddings.
S-BERT incorporates siamese and triplet network architectures to
derive semantically meaningful representations of sentences. These
embeddings can be compared using cosine similarity, enabling effi-
cient semantic similarity calculations between sentences. Our sys-
tem benefits from improved performance in generating robust and
context-aware sentence embeddings for text-based tasks.
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3. EXPERIMENTS

3.1. Dataset

Clotho v2.1 dataset [4] consists of 3839, 1045, and 1045 audio clips
in the training, validation, and test sets respectively, while the de-
velopment set comprises 5929 audio clips, each associated with five
reference captions.

3.2. Experiment setups

In the training process, epoch 20 and batch size of 96 is used with
a learning rate of 10−4. We use the Adam Optimizer [5] and Re-
duceLROnPlateau learning rate schedular. The experiments were
conducted at various random seeds. The audio feature extracted
from log-mel spectrogram is obtained by sampling rate 32kHz,
Hanning window of 1024 with 64 mel bins. Spec Augment [6] is
employed as a data augmentation method, applying frequency and
time masks to the log-mel spectrogram input to enhance training
robustness.

For comparative experimentation, the model is trained using
six different loss functions: Triplet-sum, Triplet-max [7], Triplet-
weighted [8], NT-Xent [9], InfoNCE [10], VICReg [11].

InfoNCE is widely used in contrastive learning and VICReg
is used for preventing mode collapse problem. [12] used them to-
gether so that they can improve performance while preventing col-
lapse.
4 models of the highest mAP10 score are selected for submission:

• Ensemble of 5 models: different architectures with different
loss

• Ensemble of 4 models : different architectures with different
loss

• Ensemble of 3 models: same architecture with 3 different
triplet loss

• Ensemble of 2 models: same architecture with InfoNCE loss
and InfoNCE+VICReg

4. RESULTS

The performance of audio retrieval is shown in Table 1.

Model loss R@1 R@5 R@10 mAP10

Cnn14 + SBERT

Triplet-weighted 13.86 36.08 49.24 23.54
Triplet-max 13.74 35.25 48.44 23.00
NT-Xent 13.40 35.29 48.61 22.87
InfoNCE + VICReg 10.58 30.62 43.29 19.30

Resnet38 + SBERT Triplet-weighted 13.21 34.11 47.14 22.33
NT-Xent 12.38 33.88 46.49 21.56

WLCNN14 + SBERT Triplet-weighted 11.87 33.42 46.35 21.31
Ensemble 14.74 37.59 50.68 24.46

Table 1: Score for model performance on evaluation data

5. CONCLUSION

We experimented that using pre-trained PANNs and Sentence-
Bert for audio and text encoders each can show consistent per-
formance when trained with the most layers except the projector
frozen. We conducted various ensemble combinations of audio en-
coder (Cnn14, ResNet38, WLCNN14) and loss (Triplet-weighted,

Triplet-max, NT-Xent, InfoNCE, VICReg) and found out that the
ensemble of consistent models benefit robustness.
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