Detection and Classification of Acoustic Scenes and Events 2023

Challenge

DCASE TASK 7: FOLEY SOUND SYNTHESIS
Technical Report

Ashwin Pillayl, Sage Betko', Ari Liloia', Hao Chen', Ankit Shah'

! Carnegie Mellon University, Pittsburgh, USA, {apillay, sbetko, aliloia, haoc3, aps1}@andrew.cmu.edu

ABSTRACT

Foley sound synthesis refers to the creation of realistic, diegetic
sound effects for a piece of media, such as film or radio. We pro-
pose building a deep learning system for Task 7 of the DCASE
2023 challenge that can generate original mono audio clips belong-
ing to one of seven foley sound categories. Our training dataset
consists of 4,850 sound clips from the UrbanSound8K, FSD50K,
and BBC Sound Effects datasets. We aim to better the subjec-
tive and objective quality of generated sounds by passing as much
meaningful information about the input data into latent representa-
tions as possible. The primary innovation in our submission is the
change from using melspectrograms to using CEmbeddings (com-
bined embeddings), which are input to the VQ-VAE and consist
of melspectrograms concatenated with latent representations of au-
dio produced by a pre-trained MERT model. Our submission to
track A utilizes a pre-trained MERT model; as such, PixelISNAIL
was trained on CEmbeddings. Our submission to track B uti-
lizes PixelSNAIL retrained only on melspectrograms. Our code
can be found here: https://github.com/ankitshah009/
foley-sound-synthesis_DCASE_2023. Our submission
for Track A is somewhat experimental and did not yield ideal re-
sults, but we feel it is worth documenting our work as MERT is a
bleeding-edge model.

1. INTRODUCTION

Foley sound refers to diegetic, non-musical sound effects that con-
vey the sounds produced by events depicted in a piece of media,
such as radio or film. The process of creating complex sound envi-
ronments from scratch is time-consuming and expensive; a method
for convincingly synthesizing sounds could improve the content
creation workflow. It could also be used to synthesize and aug-
ment other datasets. In this project, we build on the DCASE base-
line model to create a model that generates original audio clips
belonging to one of seven foley sound categories, namely Dog-
Bark, Footstep, GunShot, Keyboard, MovingMotorVehicle, Rain,
and Sneeze/Cough [1].

2. MODEL DESCRIPTION

2.1. Optimizations to the baseline

While experimenting with the baseline, we observed that the de-
fault VQ-VAE learning rate was too large to yield any meaningful
result, so we added a cyclic learning rate scheduler. Considering our
time and compute constraints, we developed an optimized training
scheme that could give us acceptable results within a days worth of
training on a single, consumer-grade GPU. We accomplished this
by implementing mixed precision training. We also ablated our

batch size, reducing them to 16 for VQ-VAE and 8 for PixelSNAIL
training. Lastly, we also implemented a system that employs the
trained model on inference mode to return the FAD scores for 32
randomly-generated foleys of each of the aforementioned classes
for subsequent evaluation.

2.2. Using CEmbeddings: An enhanced audio representation

As an alternative to the baseline model, we propose enhancing the
melspectrogram input with higher-level audio features correspond-
ing to factors like its key and acoustics. We believe such represen-
tations aid the model to utilize more domain-specific information
while learning intra-class and inter-class qualities of the foleys. To
this end, we integrated a pretrained encoder, MERT-v1-330M, as a
preprocessor to our system.

MERT [2] ! is a large-scale model trained on music audio
for general music understanding. It has an architecture similar
to HuBERT([3], a model for self-supervised speech representation
learning that has been proven to capture higher-level acoustical fea-
tures than melspectrograms. While HuBERT is trained on 16 kHz
speech data, MERT has been specifically trained using a Masked
Language Model (MLM) paradigm on 24 kHz music / audio data.
The audio-specificity of MERT embeddings and its higher sampling
rate results in more granular and meaningful representation of foley
features than HuBERT embeddings. Moreover, MERT has been
validated against a variety of music information retrieval (MIR)
tasks like genre classification and key detection. The developers
of MERT state that across the zeroth dimension of its embeddings,
there is a gradual increase in the level of features, e.g. the first few
dimO features represent lower-level features like the time-frequency
variations and the last few represent higher-level features like the
key to which the piece of input audio belongs. While features like
the key are more relevant to music than foleys, we believe the model
could utilize this information to identify differences between foleys
of the same class; for e.g. differences in the bark of a young Chi-
huahua and an adult Bulldog.

To aid concatenation of the melspectrograms with MERT em-
beddings, we modified how the former was obtained. This was done
by increasing the mel frequency bands to 129 and increasing the
hop size to 320 samples. We hypothesize that the increased features
provided by MERT will compensate for the increase in melspectro-
gram hop size. Finally, we combined the two embeddings to form
Combined Embeddings (“CEmbed”), as shown in Fig 1.

The use of CEmbed over plain melspectrograms required re-
training all the downstream models in our system, along with sig-
nificant changes to their architectures as described in the following

IMERT-v1-330M Huggingface:
m-a-p/MERT-v1-330M

https://huggingface.co/

Detection and Classification of Acoustic Scenes and Events 2023

Figure 1: Plot of a CEmbed for one sample in the development set.
The lowest and least uniform-looking rows represent the melspec-
trogram, while the upper rows are made up of the MERT-generated
embeddings.

subsections. For a brief comparison of the changes made to the
input embedding of the baseline and the final model, refer Table 1.

Table 1: Differences in sizes between analagous variables used in
the baseline and final models. The melspectrogram sizes are (fre-
quency band step, time step).

Variable | Bascline Shape | Final Shape
Audio Input (22050 x4, 1) | (24000x 4, 1)
Melspectrogram (80, 344) (129, 300)
MERT Encodings - (1023, 300)
Input to VQVAE (80, 344) (1152, 300)
VQ-VAE Latent (20, 80) (288, 75)

2.3. Enhancements to VQ-VAE: MVQVAE

To optimize the latent representations of foleys generated from the
incoming CEmbeds, we made several changes to the baseline VQ-
VAE architecture. The resulting model is termed MERT - VQVAE
(MVQVAE) with its main enhancements described as follows:

2.3.1. Foley Conditioning

The baseline VQ-VAE model learns an unconditional representa-
tion of sound, without any additional information about the category
of sound during optimization or inference. Hence the responsibil-
ity of conditional sound generation lies solely with PixelSNAIL,
which is tasked with learning to sample from the generalized code-
words that make of the VQ-VAE’s codebook, in order to assemble
sequences based on the unique distribution of each sound category.
However, the baseline VQ-VAE tends to produce codewords with
similar conditional distributions across foley categories, which can
make it difficult for PixelSNAIL to learn category-specific distribu-
tions. We hypothesize that this difficulty arises because the similar
distributions cause PixelSNAIL to confuse categories, resulting in
poor generation quality. To address this, we introduce a single lin-
ear layer that receives the average pre-quantization channel values
of the latent representation and the foley category of the input. The
cross-entropy loss between the predicted and the actual foley cate-
gory is added to the total loss scaled by a factor of 1 x 1072

Challenge

Actual Spectrogram

200
400
600
800

1000
1%)ugmen'cedlg‘f::ectmgrarzno0

200
400
600
800

1000

00 1 200
Reonstructed %pectrograrn

1000

Figure 2: From top to bottom: the actual CEmbed, an example of an
augmented training input to the model, and the reconstructed output
of MVQVAE

2.3.2. CEmbed-specific model expansions

The CEmbeds in our new model are ~ 14 times larger than the mel-
spectrograms; the baseline VQVAE cannot operate on them as is.
Thus, one key enhancement brought by MVQVAE include increas-
ing the size of the dictionary maintaining the codebook vectors that
can represent a single encoder output from 512 to 1024. Addition-
ally, we added a parallel ResNet block in the encoder and decoder
to increase its capacity to grasp the increased information provided
by the CEmbeds. We included asynchronous time and frequency-
masking data augmentations in the training paradigm to prevent the
model from over-associating redundant relationships that may ex-
ist in the melspectrogram and the MERT embeddding of a given
CEmbed. Fig. 2 demonstrates this training paradigm.

2.4. Optimizing PixelSNAIL for CEmbeds: Zen Mode

When applied to CEmbeds, the baseline version of PixelSNAIL
suffers from impractical matrix multiplications. The scaled dot-
product attention used in PixelSNAIL has an O((T'F)?) memory
requirement, where 7" and [’ are the time and feature dimensions
of the quantized encodings from MVQVAE. This quadratic scal-
ing makes self-attention impractical for longer sequence lengths,
especially with the increased feature dimensionality introduced by
MERT. Our group proposed an approach called Zen Mode to bal-
ance PixelSNAIL’s efficiency with the preservation of CEmbeds’
additional dimensionality.

Zen mode reduces the computation complexity of the self-
attention mechanism in PixelSNAIL by incorporating trainable
strided causal convolutional layers over the key and query vectors
and transposed causal convolutions over the attention output. The

Detection and Classification of Acoustic Scenes and Events 2023

Melspectrograms during HiFi-GAN training, time vs.
frequency (epochs 1, 94, 188)

-25

10.0

-10.0

[T 0.0
-25
5.0

75

-10.0

Figure 3: Frequency against time melspectrogram output of HiFi-
GAN during training, at epochs 1, 94, and 188 (top to bottom) -
over multiple epochs, the melspectrograms become more refined

convolutional layers downsample the input to the attention block,
representing higher-level, coarser information from the embeddings
and decreasing computational complexity. Our model applies a
downsampling factor of 4, reducing the cost of computing the self-
attention matrix by a factor of 16. Meanwhile, the actual CEmbed
data is used without any downsampling. This allows us to model
longer sequences while not sacrificing useful CEmbed feature data
in PixelSNAIL’s decoder hidden states.

Maintaining causality is essential for autoregressive models like
PixelSNAIL. Standard transposed convolutions do not inherently
possess causal properties, so we introduce a novel technique called
causal transposed convolution. Causal transposed convolutions
combine the upsampling capability of transposed convolutions with
the causality property required for autoregressive modeling. This
ensures that the generated output maintains causality.

To the best of our knowledge, the use of zen mode and causal
transposed convolutions have not yet been proposed in the machine
learning literature, making this a unique contribution of this work.
With these enhancements, we term the new model as Zen Pixel-
SNAIL.

2.5. Modifications to HiFi-GAN: MHiFiGAN

The pre-trained HiFi-GAN provided by DCASE expects VQVAE-
decoded melspectrograms to generate audio at 22050 Hz. Since
MVQVAE returns decoded CEmbeds, we propose MERT HiFi-
GAN (MHiFiGAN), a model trained from scratch to vocode CEm-
beds to audio at 24000 Hz. In contrast from HiFiGAN that per-
formed dilation by a factor of 256, MHiFiGAN dilates incoming
CEmbed, which have a feature rate of 75 Hz, by a factor of 320.
This also accounts for errors in rounding the duration of the foley
sounds to 4 seconds, an area in which the previous model was prone
to error.

To make MHiFiGAN robust against imperfections in the
MVQVAE-decoded CEmbeds, we modified the training paradigm
of MHiFiGAN such that its trained on time and frequency masked
CEmbeds.

Challenge

2.6. Submissions to tracks A and B

Our submission to track A utilizes a pre-trained MERT model; as
such, PixelSNAIL was trained on CEmbeds. Our submission to
track B utilizes PixelSNAIL retrained only on melspectrograms.

3. PRELIMINARY RESULTS

The DCASE development dataset was split into a train and valida-
tion set for model evaluation. The train set consisted of 4360 sam-
ples and the validation set contained 245 samples. The validation
set was constructed with a stratified random sample where 35 sam-
ples were randomly selected from each category, and the remaining
samples were assigned for training.

3.1. Baseline Model

We have successfully implemented and trained the baseline solution
described in [4], surpassing the results of the challenge organizers in
all seven foley sound categories. The baseline model’s FAD scores
evaluated on the development dataset are provided in Table 2.

Table 2: FAD scores on DCASE development set (lower is better).

ID Category FAD (DCASE) | FAD (Ours)
0 DogBark 13.411 8.958
1 Footstep 8.109 4.189
2 GunShot 7.951 6.765
3 Keyboard 5.230 3.086
4 | MovingMotorVehicle 16.108 11.319
5 Rain 13.337 9.321
6 Sneeze/Cough 3.770 2.675

Our training runs for VQ-VAE and PixelSNAIL are openly
available to view on Weights & Biases.> We would also like to
present a few example sounds generated by our current model in
each category.?

Following the training procedure by [4], we trained the VQ-
VAE for 800 epochs with a learning rate of 3 x 10™%; we reduced
the batch size to 16 from 64 in order to fit within a single GPU.
We have exceeded the baseline performance with only 265 train-
ing epochs of PixelSNAIL, whereas [4] train for 1500 epochs. We
attribute this primarily to our reduction in batch size from 32 to 8
and our addition of a cyclic learning rate scheduler with a reduced
initial learning rate of 1 x 10~°. Our use of PyTorch’s automatic
mixed-precision (AMP) training enabled us to complete the training
of both the baseline VQ-VAE and PixelSNAIL models in under 24
hours on a single NVIDIA RTX A4000 with 16GB of VRAM.

3.2. Conditioned VQ-VAE and MVQVAE

Table 3 presents the results for the baseline and conditioned VQ-
VAE models trained on Melspectrograms. Table 5 shows the same
but for the MVQVAE. The addition of the classification loss term
reduces both the train and validation MSE reconstruction loss.

2https://wandb.ai/audio-idl/
Foley-sound-synthesis_DCASE_2023-baseline_
dcase2023_task7_baseline

3Audio synthesis examples: https://drive.google.com/
drive/folders/10LdgxEeVerVNEqgcAb3uW]jjpxnlmH27Jd

Detection and Classification of Acoustic Scenes and Events 2023

We see a significant reduction in latent loss, which measures the
difference between the pre- and post-quantization encodings. The
encoder output is mapped once to the codewords to obtain training
data for PixelSNAIL, and then again to decode PixelSNAIL gener-
ation output during synthesis, so it is critical to obtain a low latent
loss. This measures the degree of misalignment between the code-
book and the encoder output, and hence the level of noise introduced
by mapping between the encodings and codebook vectors.[4]

We hypothesize that the addition of class-conditioning de-
scribed in section 2.3.1 while training the VQ-VAE/MVQVAE
helps to better structure the latent space, as it allows the model to
separate features unique to each sound category. This separation en-
ables the codebook to hold more meaningful codewords that cater to
individual sound categories, ultimately leading to a more effective
use of the codebook’s capacity.

Table 3: Loss terms in the baseline (unconditioned) and conditioned
Melspectrogram based VQ-VAE.

Train

Model MSE Cross-Entropy | Latent Diff
Conditioned | 0.14056 0.02053 0.00167
Baseline 0.14395 - 0.00183

Validation

Model MSE Cross-Entropy | Latent Diff
Conditioned | 0.14814 0.02145 0.00171
Baseline 0.19166 - 0.00222

Table 4: Loss terms in the conditioned and unconditioned MVQ-
VAE.

Train

Model MSE | Cross-Entropy | Latent Diff
Conditioned 0.357 0.0859 0.0179
Unconditioned | 0.4084 - 0.2973

Validation

Model MSE | Cross-Entropy | Latent Diff
Conditioned 0.2636 0.02145 0.0208
Unconditioned | 0.3196 - 0.3669

3.3. MHiFi-GAN

The baseline HiFiGAN model provided to us pre-trained, so we are
unable to report its metrics to compare it with the results of MHiFi-
GAN. However, through playback of the audio generated, we can
validate that the model improves the quality of CEmbed to audio
conversion over several epochs. Table 6 summarizes the validation
and training metrics obtained for MHiFi-GAN after training it for
180 epochs.

4. OBSTACLES TO FINAL TRACK A RESULTS

Due to upstream modifications made to accommodate more detailed
input representations, we had to enhance and train these models our-
selves. One challenge we faced during training was requiring a fully
trained MVQVAE to extract codes for Zen PixelSNAIL training.

Challenge

Table 5: Training & Validation Metrics for MHiFiGAN.
Train
Discriminator Loss | Generator Loss
3.041 27911
Validation
Discriminator Loss | Generator Loss
2.961 27.760

Mel Recon. L1
0.3336

Mel Recon. L1
0.3281

Despite implementing Zen mode optimizations, the increased size
of Zen PixelSNAIL introduced numerous engineering challenges.

We experimented with several MVQVAE configurations. The
first, MVQVAEV1, contained 512 codewords. To train Zen Pix-
eISNAIL on MVQVAEVI codes and include CEmbeds within our
fixed compute budget of 16GB VRAM, we decreased its parame-
ter count by reducing the number of channels from 256 to 128 and
the number of residual blocks from 4 to 3. After several days, the
model reached a saturation point at 50% accuracy and could not
learn further, necessitating training from scratch on a larger model.

We discovered that the 512-codeword limitation of MVQ-
VAEV1 hindered its ability to reconstruct CEmbeds. We trained a
second model, MVQVAEV2, with 1024 codewords, which resulted
in better reconstruction MSE and significantly improved qualitative
reconstruction during listening tests on the HiFi-GAN waveform
output. We restored the channel count and the number of residual
blocks in Zen PixelSNAIL to their original values and trained on
the larger MVQVAEV2 codes.

Our final configuration faced a multitude of engineering chal-
lenges as we attempted to scale up. The larger model was particu-
larly susceptible to exploding gradients, which corrupted the opti-
mizer state. Due to Zen PixelSNAIL’s four serial decoder blocks,
a significant accumulation of error occurred when applied to the
larger CEmbeds. To stabilize training, we implemented gradient
clipping and experimented with different values of the maximum
gradient norm.

PixelSNAIL trained slower than expected on the larger MERT
representations, despite renting four A40s to try to finish it in time.
We prepared a track B submission using smaller discrete T-F rep-
resentations that we knew PixelSNAIL could learn quickly so that
we would have something not*“outlyingly bad”, in the event that our
Track A samples were not ideal. While the samples produced by
Track B are decent, we are disappointed by our Track A results, but
are proud of the work we put in.

5. CONCLUSIONS

We create embeddings that represent both the lower-level time-
frequency variances and the higher-level acoustical and musical fea-
tures of the foleys. We then enhance our models to utilize this in-
formation for the intrinsic development of more detailed and distin-
guishable statistical distributions of each foley class.

We introduced potentially innovative techniques such as class
conditioning to increase the inter-class distance between foleys, Zen
Mode to streamline attention-context computations without sacrific-
ing input quality, and Causal Transpose CNNs to support dilation in
auto-regressive prediction problems.

Although we encountered issues when training our models, we
believe our techniques warrant further investigation and we will be
continuing our work after the competition deadline.

Detection and Classification of Acoustic Scenes and Events 2023

(1]

(2]

(3]

(4]

6. REFERENCES

S. B. Davis and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in contin-
uously spoken sentences,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 28, no. 4, pp. 357-366,
Aug. 1980.

Y. Li, R. Yuan, G. Zhang, Y. Ma, C. Lin, X. Chen, A. Ragni,
H. Yin, Z. Hu, H. He, et al., “Large-scale pretrained model for
self-supervised music audio representation learning,” 2022.

W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdi-
nov, and A. Mohamed, “Hubert: Self-supervised speech repre-
sentation learning by masked prediction of hidden units,” 2021.

X. Liu, T. Igbal, J. Zhao, Q. Huang, M. D. Plumbley, and
W. Wang, “Conditional sound generation using neural discrete
time-frequency representation learning,” 2021 IEEE 315t Inter-
national Workshop on Machine Learning for Signal Processing
(MLSP), pp. 1-6, 2021.

Challenge

