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ABSTRACT

In this technical report, we describe our submission system for
DCASE2023 Task 7: Foley Sound Synthesis (Track B). A Sound
Pixelate Diffuse model is proposed to realize foley sound synthesis.
The model includes data format conversion and synthesising audio
through the diffusion model. The Synthesised audio are evaluated
on DCASE2023 Task 7 Eval FAD evaluation set and the best FAD
score of all categories is 8.429.

Index Terms— DCASE, Foley Sound Synthesis, Generative
Model, Diffusion Model

1. INTRODUCTION

Intelligent audio generation refers to the process of automatically
generating audio content through computer systems using artificial
intelligence technology and algorithms. It combines technologies
such as audio processing, machine learning, and deep neural net-
works to simulate and replicate the ability of human audio creation.
Audio generation has great application prospects in fields such as
media background music and intelligent music intervention [1]. Fo-
ley sound [2] is the art of creating sound effects for media using
props and methods to simulate everyday sounds. It is a crucial
aspect of post production and requires specialized approaches for
generating a large number of similar yet distinct sounds[3].

The mainstream methods for sound generation can be cate-
gorized into two types [4, 5, 6]: Generative Adversarial Network
(GAN), and Diffusion Model. GANs produce high-quality output
but can be prone to mode collapse [7, 8]. As an alternative, Dif-
fusion Model employs a more stabler training algorithm called in-
verse diffusion, which facilitates easier training and avoids mode
collapse. Additionally, the Diffusion Model does not require post-
training updates, making the generation process more efficient and
eliminating the need to retain the generator model. So it can be used
for Foley sound synthesis due to their stable training and ability to
generate diverse and novel samples [9].

In this work, we propose a diffusion-model-based model named
Sound Pixelate Diffuse (SPD) for sound synthesis. Furthermore,
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we employed wavelet filtering to reduce noise in the audio signal,
which may effectively decompose the signal into its various fre-
quency components, facilitating targeted noise reduction in each
component.

2. METHODS

2.1. Denoising Diffusion Implicit Model

Denoising Diffusion Probabilistic Model (DDPM) is a probabilistic
modeling approach used to generate high-quality images or videos.
It achieves this by gradually diffusing and denoising noise im-
ages [10]. Specifically, DDPM uses an increasing diffusion coef-
ficient to control the diffusion speed of noise images and applies
a noise-reconstruction network to denoise the image at each step.
DDPM models the diffusion process using an inverse differential
equation. The equation 1 is the sampling process of DDPM.

Xt−1 =
1√
Xt

(Xt −
1− αt√
1− ᾱt

ϵθ(Xt, t)) + σtZ (1)

DDPM’s noise addition is based on the Markov chain pro-
cess, which means that the denoising process must also be based
on this process, leading to a large number of steps. Compared
to DDPM, Denoising Diffusion Implicit Model (DDIM) proposed
Non-Markovian forward processes and derived a faster sampling
process based on this assumption [11]. To achieve the best possible
sound quality, we ultimately chose to use DDIM for Foley sound
synthesis. Unlike DDPM, the equation 2 reduces the number of
sampling steps by decreasing the dependence on the posterior dis-
tribution.

Xt−1 =
√
αt−1(

Xt −
√
1− αt−1ϵθ(Xt)√

αt
) +Dt + σtϵt (2)

Here Dt stands for direction pointing to Xt.

Dt =
√

1− αt−1 − σ2
t · ϵθ(Xt) (3)

2.2. Sound Pixelate Diffuse Model

Training models directly on audio waveforms can be computation-
ally expensive and time-consuming due to the high dimensionality
and complex nature of raw audio date. So we attempted to convert
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Figure 1: Framework of SPD model for audio generation.

the audio file into a Mel Spectrogram image and then used this im-
age to convert it into an audio file. After such restoration, we found
that the audio obtained did not differ significantly in terms of the
listening experience and effect [12].

Figure 1 shows the framework of SPD model. In the SPD
model, the Mel Spectrogram image format is used as the input,
which can bring some advantages [13]. Using the Mel Spectrogram
as the input can greatly reduce data volume and processing time,
and improve the efficiency of training and processing [14]. Fur-
thermore, the Mel filter can convert the original signal into a more
linear signal with the human ear’s perception of sound frequency,
which helps reduce the impact of noise and improve the auditory
perception of audio processing. We utilize the well-established
DDIM model and we introduce a distinct modification to the U-
Net architecture. This modification involves transforming the pre-
viously square-shaped receptive fields into rectangular ones, which
is specifically designed to better align with the requirements of our
task. This adaptation aims to enhance the model’s ability to gener-
ate outputs that effectively meet the task’s demands.

3. EXPERIMENT

3.1. Data Preprocessing

The raw audio signal has a sampling frequency of 22,050 Hz, and
we extract input features from it using Short Time Fourier Transfor-
mation (STFT) with a window size of 1024 and 25% overlap. We
also apply an 80-band Log Mel filter bank to process the original
signal [15, 16].

3.2. SPD Model Settings

The diffusion model framework is trained for a total of 300 epochs.
AdamW optimizer with a weight decay of 1e-6 and a starting learn-
ing rate of 1e-4 is utilized, along with betas of (0.95, 0.999) as the
momentum coefficients for the Adam optimization algorithm to bal-
ance the effects of the first and second moments of the gradients.
The batch size is set to 8. It allows for good results to be achieved
after running for approximately 12 hours on an NVIDIA A40 GPU.
This approach results in a significant improvement in training speed
compared to the official baseline.

The input images have a size of (256, 386). So we design a net-
work that is suitable for rectangular shapes. The input feature map
is down-sampled using multiple DownBlock2D modules to reduce
the resolution while increasing the number of channels to extract
more feature information. An AttentionBlock layer is introduced in
the fifth layer to incorporate an attention mechanism that better cap-
tures the importance of different features in the input, thereby im-
proving the accuracy and generalization performance of the model.
Subsequently, the low-resolution feature map is up-sampled to the

original resolution using multiple UpBlock2D layers while utilizing
more high-level features.

Table 1 lists the architecture and detailed parameters of the SPD
model.

Table 1: The network architecture and parameters of SPD model.

Block kernel stride
DownBlock2D 1 conv, 3x3, (128,128,192)
DownBlock2D 2 conv, 3x3, (128,64,96)
DownBlock2D 3 conv, 3x3, (256,32,48)
DownBlock2D 4 conv, 3x3, (256,16,24)
DownBlock2D 5+AttentionBlock conv, 3x3, (512,8,12)
DownBlock2D 6 conv, 3x3, (512,4,6)
MidBlock2D conv, 3x3, (512,4,6)
UpBlock2D 1 conv, 3x3, (512,4,6)
UpBlock2D 2+AttentionBlock conv, 3x3, (512,8,12)
UpBlock2D 3 conv, 3x3, (256,16,24)
UpBlock2D 4 conv, 3x3, (256,32,48)
UpBlock2D 5 conv, 3x3, (128,64,96)
UpBlock2D 6 conv, 3x3, (128,128,192)

3.3. Sound Synthesis

The SPD model only requires a small number of iterations to gen-
erate audio results that meet the required standards. After 50 itera-
tions, the model produced satisfactory diffusion results. Due to the
alteration of data volume during the pre-processing stage, our model
demonstrated high efficiency during audio generation, taking only
2 seconds to generate a single audio by using a single commercial
grade NVIDIA RTX A5000 GPU.

After obtaining the generated audio data using SPD, we at-
tempted to reduce noise in the audio through wavelet filtering.
Wavelet transforms possess excellent time-frequency properties, en-
abling the decomposition of signals into different frequency com-
ponents [17]. As such, we employed wavelet filtering as a means
of reducing noise in our audio signal. By utilizing wavelet trans-
forms, we were able to effectively decompose the signal into its
various frequency components, facilitating targeted noise reduction
in each component. We employed the sym8 wavelet filter with a
fixed thresholding method (sqtwolog) and a wavelet transform level
set to 5, to filter the output of our model.

From the perspective of the Mel Spectrogram, although wavelet
denoising yields cleaner and purer audio in terms of generation. The
filtering effect is shown in figure 3. In terms of experimental re-
sults, we observed that wavelet filtering had a mixed effect on the
FAD values: depending on the signal characteristics, it could either
increase or decrease the FAD values. Consequently, we adopted a
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Figure 2: Schematic diagram of SPD model structure.
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Figure 3: Wavelet domain denoise.

selective approach in our submission, applying noise reduction to
some of the submissions while leaving others unfiltered.

4. SUBMISSIONS AND RESULTS

The best final results are reported in Table 2. Below we describe
our submissions in detail:

Submission 1: This submission uses the results of the 250
epochs of training. No denoising was performed on the generated
audio.

Submission 2: This submission uses the results of the 300
epochs of training. No denoising was performed on the generated
audio.

Submission 3: This submission uses the results of the 500
epochs of training. No denoising was performed on the generated
audio.

Submission 4: This submission uses the results of the 300
epochs of training. Using Wavelet domain denoise on the gener-
ated audio.

Table 2: The best final results.
Category FAD
DogBark 8.866
Footstep 5.478
GunShot 9.333
Keyboard 4.936
MovingMotorVehicle 14.488
Rain 5.647
Sneeze/Cough 10.259
ALL 8.429

5. CONCLUSION

This technical report provides a brief overview of the progress in
Track 7 of the DCASE 2023 Challenge. We utilized a diffusion
model to construct the entire model and converted the audio into im-
ages to improve training speed and generation quality while main-
taining satisfactory results. Additionally, we applied a wavelet de-
noising technique to the generated audio to achieve optimal auditory
effects. By combining these optimization techniques, our model
achieves faster training speed while ensuring generation quality.
This allows us to train the model more quickly and generate higher-
quality audio. This is particularly important for real-time applica-
tions and large-scale generation tasks as it improves efficiency and
achieves significant improvements in quality.
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