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ABSTRACT
This technical report describes an Automated Audio Captioning
system for the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2023 Challenge, Task 6a (automated audio cap-
tioning). Our approach employs an encoder-decoder architecture,
with the encoder utilizing a large contrastive pre-trained HTS-AT
capable of handling variable-length audio segments. The decoder is
based on the GPT2 model. To incorporate audio into the decoding
process, we employ a light mapping network that translates audio
representations into a prefix, effectively guiding the decoder’s gen-
eration process. Given the limited data availability, we pre-train
our model on various audio captioning datasets and fine-tune it on
Clotho. We reach a SPIDERr-FL score of 29.3 on the evaluation
split of the Clotho-v2 dataset.

Index Terms— audio captioning, transformer encoder-
decoder, GPT2, pre-training

1. INTRODUCTION

Audio captioning is the intermodal translation task of describing
human-perceived audio information using free text. It enables the
expression of arbitrary information beyond fixed labels, such as
complex scenes of objects or events and their relationship over
time. Collecting this data requires expensive and time-consuming
human annotation or high-quality web sources. Both factors limit
the amount of existing data and motivate an approach for automatic
auditory caption generation.

We adopt a sequence-to-sequence framework to address this
challenge, employing an encoder-decoder architecture. Due to the
limited amount of data and the complexity of the captioning task,
we experiment with using pre-trained models. An encoder creates
rich audio embeddings, while a decoder generates sequences based
on the encoding. We follow the CLIPCap architecture [1], which
trains a mapping network to translate the audio representations into
a prefix. This prefix serves as a guide for the decoder during the
caption generation process. We call our approach PEACS for Prefix
Encoding for Auditory Caption Synthesis.

2. SYSTEM DESCRIPTION

The method expects a dataset of size N where each data point con-
sists of an audio signal and a textual description {ai, ci}Ni=1. The

audio signal is embedded using a strong modality-specific encoder
to get semantically rich representations. The goal is to train a model
with parameters θ that learns the generation of meaningful captions
for an audio file. The target caption is transformed into a fixed
length sequence of tokens ci = ci1, . . . , c

i
ℓ with length ℓ = 80.

Longer captions are truncated and smaller are padded by using an
attention mask to indicate the model which tokens should be attend
to. The training objective can be formalized as following:

max
θ

N∑
i=1

log pθ(c
i
1, . . . , c

i
ℓ | ai) (1)

An autoregressive language model is used to generate the cap-
tions. It outputs the probability distribution of the next token based
on the previous tokens. For this reason, a prefix created from the en-
coder’s embeddings can be integrated to guide the generation pro-
cess. The objective reformulates to:

max
θ

N∑
i=1

ℓ∑
j=1

log pθ(c
i
j | ai, ci1, · · ·, cij−1) (2)

We utilize a GPT2small [2] pre-trained on text generation as
decoder, since it offers strong performance and is publicly avail-
able. For the encoder component, we utilize CLAP (Contrastive
Language-Audio Pre-Training) [3] with an HTS-AT [4] backbone.
CLAP is designed to learn a shared representation between audio
signals and auditory captions. It is trained on a large volume of
audio-caption pairs using a contrastive loss function. The CLAP
model has demonstrated impressive performance across various au-
dio tasks, which we believe can greatly benefit the captioning task
at hand.

A mapping network M creates a prefix p of size k from the
representations of the encoder. The prefix has the same dimensions
as a word embedding of GPT2:

pi1, . . . , p
i
k = M

(
CLAP(ai)

)
(3)

We experiment with different prefix sizes and mapping network but
found a simple linear mapping and a prefix length of k = 20 works
best.
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Table 1: Scores of the PEACS model on Clotho evaluation split. Pre-training datasets are AudioCaps (AC), MACS (MC), SoundDescs (SD),
WavText5k (WT).

ID Pre-train datasets Train GPT METEOR ROUGEL FENSE CIDEr SPICE SPIDEr SPIDEr-FL

I - 16.0 37.0 45.9 35.1 11.6 23.4 22.9
II AC, MC, SD, WT 16.5 38.0 46.9 36.5 11.8 24.1 23.9

III - ✓ 17.3 38.3 47.0 39.5 11.8 25.6 25.5
IV AC, MC ✓ 17.9 38.9 49.3 44.3 12.6 28.5 28.4
V AC, MC, SD, WT ✓ 18.3 39.3 49.8 45.4 13.2 29.3 29.2

DCASE Baseline 17.7 - - 42.0 11.9 27.0 26.1

The models is trained using the cross-entropy loss between the
predicted and the true captions:

L = −
N∑
i=1

ℓ∑
j=1

log pθ(c
i
j | pi1, . . . , pik, ci1, . . . , cij−1). (4)

3. EXPERIMENTS AND RESULTS

3.1. Dataset

We collect multiple audio captioning datasets to enrich the train-
ing of our method. Among these datasets, Clotho [5], AudioCaps
[6], and MACS [7] stand out as high-quality resources, featuring
human-annotated data. In contrast, SoundDescs [8] and WavText5k
[9] consist of sound effects collected from various web sources, ac-
companied by captions constructed using provided metadata.

Table 2: Overview of datasets used for training.

Dataset #Clips #Captions Avg. duration (s)

Clotho [5] 5,929 29,645 22.44
AudioCaps [6] 47,151 52,575 9.84
MACS [7] 3,930 17,275 10.88
SoundDescs [8] 33,020 33,020 115.75
WavText5k [9] 4,517 4,517 20.27

3.2. Data Pre-processing

Our system processes audio samples of arbitrary length using the
feature fusion mechanism introduced by [3]. The mechanism com-
bines coarse global information with random local information. The
full audio clip is downsampled to 10 seconds, serving as global in-
formation. Additionally, three random 10-second clips extracted
from the beginning, middle, and end of the original clip are utilized
as local features.

The audio clips are converted to a mono channel with a sam-
pling rate of 48 kHz. Log mel-spectrograms using a Hanning win-
dow of 1024, a hop size 480, and 64-mel bins are extracted for all
10s segments. We apply SpecAugment [10] to the fused spectro-
gram with two masks per axis during training. We mask 128 frames
on the time axis and 16 on the frequency axis.

The captions are transformed to lowercase and punctuations
are removed. The text is tokenized using a pre-trained Byte-Pair-
Encoding (BPE) with a vocabulary size of 50k. An audio clip with
more than one caption is duplicated in one epoch to get all possible
information, as the amount of data is limited.

3.3. Training

We divide the training into two parts. First we pre-train our method
on an enlarged dataset, and then fine-tune the model on the devel-
opment splits of Clotho. The audio encoder is frozen, while we
experiment with training the decoder.

The training of the model is conducted on a single GPU with
mixed precision and a batch size of 64. For optimization, we em-
ploy the AdamW optimizer with a weight decay of 0.01. Through
small preliminary experiments, we have determined that a lower
learning rate yields better results, considering that only the map-
ping needs to be learned. The learning rate is thus set to 1 × 10−5

and linearly decreases after a warm-up. All models are trained with
a maximum of 30 epochs. Due to rapid over-fitting, the early stop-
ping mechanism is introduced, which stops the training process if
the validation loss does not decrease within two epochs.

We fine-tune the model for 10 epochs with a learning rate of
1× 10−6.

3.4. Decoding

We utilize beam search with a beam size of 8 to generate captions
during inference. Upon qualitative analysis, we noted a tendency
of the model to generate repetitive phrases. To address this issue,
we conducted experiments employing different decoding strategies.
Specifically, we explored the following approaches:

• Repetition Penalty (RP): We introduce an exponential penalty
on repeated sequences.

• N-gram Prevention: We prevent the decoding of n-grams that
have already appeared in the generated output.

We found that combining a repetition penalty of 1.2 and bi-
gram prevention yield the best performance. A comparison of these
methods for PEACS trained on setup V can be found in Table 3.

3.5. Results

Table 1 shows the results of our proposed model on the
development-evaluation set of Clotho. We investigate different se-
tups varying in the pre-training datasets. Setup I and III are skipping
the pre-training step and are directly trained on the Clotho develop-
ment set. Setup IV is pretrained on AudioCaps (AC) and MACS
(MC), while setup V also adds SoundDescs (SD) and WavText5k
(WT). We submit the results of IV and V.

Freezing the decoder results in a lightweight architecture since
only the mapping network needs to be optimized. However, this
approach leads to decreased performance, highlighting the impor-
tance of training the decoder as well. We observe that pre-training
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on other datasets is beneficial, even if the captions are noisy. Fur-
thermore, we observe few fluency errors, as the performance of the
SPIDER metric is only slightly affected by the fluency error de-
tection. This indicates the advantage of using a large pre-trained
language model.

Table 3: Comparison of using a repetition penalty (RP) and bi-gram
prevention for different beam sizes. The performance is measured
with SPIDEr-FL of PEACS (V) on the Clotho evaluation split.

Beam size w/o penalty RP RP +
Bi-gram

1 25.3 25.8 25.2
3 28.0 28.2 28.8
5 28.5 28.5 29.0
8 28.7 29.0 29.2

4. CONCLUSION

This technical report outlines our submission to Task 6a of the
DCASE 2023 challenge. We demonstrate the effectiveness of lever-
aging pre-trained encoder and decoder architectures, as well as em-
ploying the prefixing technique to establish its connections. Our
method offers the advantages of being lightweight and fast to train.
Furthermore, through improvements in the decoding strategy, we
surpass the baseline performance in all evaluation metrics.
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