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ABSTRACT

This report describes our submission to DCASE2023 Task7:
Foley sound synthesis challenge. Our system uses a latent diffu-
sion model (LDM) that generates a latent representation of audio
conditioned on a specified sound class, a variational autoencoder
that converts the latent representation to a mel-spectrogram, and
a neural vocoder based on HiFi-GAN that reconstructs a natural
waveform from the mel-spectrogram. We train the LDM using the
DCASE2023 Task7 development set with its sound class indices as
conditioners for generating class-specific latent representations. To
enhance the diversity of generated sounds, we finetune a pretrained
text-to-audio LDM that is trained with the AudioCaps dataset and
an instruction-tuned large language model. Furthermore, we utilize
a postprocessing filter that selects a subset of generated sounds to
match a distribution of target class sounds. Our system achieved
an average Fréchet audio distance of 4.744, which is significantly
better than 9.702 produced by the baseline system.

Index Terms— foley sound synthesis, conditional sound gen-
eration, latent diffusion, Fréchet audio distance

1. INTRODUCTION

Foley sound synthesis is the task of generating sound effects added
to multimedia content to enhance the perceptual audio experience.
The DCASE2023 challenge Task7 [1] is organized to stimulate
research about this challenging problem. In this task, partici-
pants build a foley sound generation model that produces 100 di-
verse audio samples for each of the predefined sound classes: dog
bark, footstep, gunshot, keyboard, moving motor vehicle, rain, and
sneeze/cough.

For attempting the sound generation task, it is worth investi-
gating recently proposed sound generation models. AudioLDM [2]
has demonstrated conditional sound generation with text prompt-
ing. AudioLDM is composed of a latent diffusion model (LDM),
a variational autoencoder (VAE), and a neural vocoder. The LDM
is conditioned on a text prompt through the Contrastive Language-
Audio Pretraining (CLAP) embedding. The latent representation is
provided by the VAE learned to autoencode a mel-spectrogram into
a compressed latent space. The neural vocoder is based on HiFi-
GAN [3], which decodes a waveform from the mel-spectrogram.
Tango [4] has been proposed to enhance the text prompting func-
tionality of AudioLDM using an instruction-tuned large language
model (LLM) instead of the CLAP embedding. Although such
text prompting models have shown to be effective in fine-grained
guidance for audio generation, existing models cannot utilize given
class-specific audio examples to resemble, which should be incor-
porated for the “category-to-sound” task [1].
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Figure 1: System overview. The audio generation pipline (top)
has three elements. The core is a latent diffusion model (LDM)
with class-conditional embeddings (Emb.). We use pre-trained
variational-autoencoder and HiFi-GAN vocoder for the reconstruc-
tion. The samples produced are then filtered during post-processing
(bottom) by greedy and Metropolis-Hastings optimization.

Therefore, we modify an existing implementation of Tango 1 to
enable sound-class-based guidance instead of text prompting. The
class-conditioned LDM is trained using the development set of au-
dio with corresponding sound class labels. The model is initialized
with a pretrained model of Tango, which was trained with Audio-
Caps [5] dataset and Flan-T5 [6] LLM. The conditioning part based
on Flan-T5 is replaced with a simple linear embedding layer to real-
ize sound-class-based conditioning. Moreover, we propose a post-
processing filter that selects a subset of generated samples to match
a distribution of the target sound class. The postprocessing filter
adopts a greedy backward selection strategy that iteratively drops
a sample to achieve the minimum Fréchet audio distance (FAD).
Our experiments show that our system significantly outperforms the
baseline system provided by the task organizers in terms of FAD.

2. SYSTEM OVERVIEW

An overview of our submitted system is depicted in Figure 1. Our
system adopts a similar pipeline with Tango [4], where a latent gen-
erator based on LDM, a latent-to-mel decoder using VAE, and a
mel-to-wav vocoder are cascaded. Our LDM accepts a sound class
index c as a conditioner instead of a text prompt. We use pretrained

1https://github.com/declare-lab/tango
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VAE and HiFi-GAN models used in AudioLDM [2] to reconstruct
a waveform from the latent representation. After the audio genera-
tion pipeline, a postprocessing filter is employed to drop irrelevant
samples to match the distribution of a target sound class. In the
following subsections, we describe our implementation of the mod-
ules.

2.1. Latent diffusion with sound-class-based conditioning

Our LDM transforms a sampled Gaussian noise ZN ∈ RC×T
r
×F

r

into a latent representation Z0 through N reverse diffusion steps
with a UNet-based neural network. T is the number of mel-
spectrogram frames, F is the number of mel-filter bins, C is the
number of channels in latent space, and r is the compression level
of VAE. The neural network receives a L-length sequence of d-
dimensional embedding vectors E ∈ RL×d transformed from the
sound class indices through a linear embedding layer. The condi-
tioner E is fed into the network through the cross-attention mecha-
nism.

When training, our model is initialized with a pretrained check-
point of Tango. The checkpoint is designed to receive a sequence
of embedding vectors E from the Flan-T5 text encoder. We replace
the text encoder with a linear embedding layer that projects a sound
class index c into a d-dimentional vector. Unlike Tango, we jointly
train the conditioner with the main network of LDM. Although the
cross-attention mechanism for conditioning accepts a sequence of
embedding vectors, which is designed to accept a text sequence,
we use a single target class embedding vector as E ∈ R1×d in
this work. Given the noisy latent feature Zn, the corresponding
class embedding vector E, and random isotropic Gaussian noise
ε̄m ∈ RC×T

r
×F

r , the neural network is trained to minimize the fol-
lowing loss function L at time step n on the basis of the theory of
denoising diffusion probabilistic models [7]:

L = ∥ε̄n − ε(Zn,E, n; θ)∥22, (1)

ε(·, ·, ·; θ) is the neural network that outputs the estimated noise of
the same shape as Zn.

During the inference, we used the procedure of denoising diffu-
sion implicit models (DDIM) [8] to accelerate the sampling speed.
In addition, we used the classifier-free guidance [9] to boost the fi-
delity of the sound class. Using these techniques, the deterministic
backward process to obtain Zn−1 from Zn can be written by

Zn−1 =
√
αn−1

(
Zn −

√
1− αnε̃n√
αn

)
+

√
1− αn − σ2

nε̃n,

(2)

ε̃n =(1 + w)ε(Zn,E, n; θ)− wε(Zn,O, n; θ), (3)
αn =1− βn, (4)

where βn and σ2
n are variances of Gaussian distributions in the for-

ward and reverse process, respectively. w is a parameter of the guid-
ance scale.

2.2. Variational autoencoder and neural vocoder

We use VAE to compress a mel-spectrogram M ∈ RT×F into the
latent space parametrized by mean and variance µ, σ ∈ RC×T

r
×F

r .
The VAE is composed of a stack of CNN-based encoders. In the
submitted system pipeline, the latent Z̃0 produced by the LDM is
fed into the decoder of VAE to reconstruct a mel-spectrogram M .

To reconstruct a waveform x ∈ RT ′
from a mel-spectrogram

M given by VAE, we use the generator of HiFi-GAN [3], where T ′

is a length of the waveform. The module repeatedly upsamples the
mel-spectrograms by a transposed convolution followed by multi-
receptive field fusion (MRF). The MRF is composed of residual
blocks, where each block processes the inputs by convolutions of
multiple kernel sizes and dilations to capture the temporal feature
by various receptive fields.

2.3. FAD-oriented postprocessing filter

The quality of the samples produced by the system, while accept-
able, can be improved by over-generating and filtering. For this
task, a target sample quality metric is necessary. The FAD metric
used in the challenge is an obvious choice. The FAD is computed as
follows. First, VGGish [10] embeddings of both the reference and
generated samples are computed. The embeddings are computed
for segments of 16,000 samples with half-overlap. This produces
10 embedding vectors per 4 s of generated audio. We note that the
challenge abuses the metric a little bit since the VGGish model was
trained on 16 kHz data, while the challenge uses 22.05 kHz. The
mean µ and covariance matrix Σ of the embedding vectors of both
reference and generated audio are computed and their Fréchet dis-
tance [11] is

FAD(µr,Σr,µg,Σg) =

∥µr − µg∥2 + tr
(
Σr +Σg − 2(ΣrΣg)

1/2
)
. (5)

To obtain P samples, we first generate Q samples, with Q > P .
Then, we first reduce the number of samples by greedy selection.
We start with the set of all Q samples, denoted S = {1, . . . , Q}.
At each iteration, we remove sample k whose absence decreases the
FAD most, i.e.,

k = argmin
ℓ∈S

FAD(µr,Σr, µ̄
(S−ℓ)
g , Σ̄(S−ℓ)

g ), (6)

where µ̄
(S−ℓ)
g and Σ̄

(S−ℓ)
g are the mean and covariance matrix,

respectively, after removing the ℓth sample. Then, we update
S ← S − {k}, where ”−” here is the set difference operator. We
repeat until the size of S is P , or no sample can be removed without
the FAD increasing.

If we still have more than P samples, we apply the Metropolis-
Hastings algorithm [12] to find a good sub-set of P elements. We
initialize the algorithm by evaluating the FAD for 100 subsets of
P samples and picking the lowest one. At each iteration of the
algorithm, we randomly swap two samples. We first pick at random
one of the current P samples. Then, we pick one of the discarded
samples with probability inversely proportional to the embedding
distance to the first sample. We swap the two samples and evaluate
the FAD. If it decreases, we accept the change. If it increases, we
only accept the change with a small probability that decreases over
time with a linear schedule. Otherwise, we reject the change. The
subset with the lowest FAD over all iterations is returned by the
algorithm.

3. EXPERIMENTS

3.1. Models and hyperparameters

HiFi-GAN and VAE: We used pretrained checkpoints of HiFi-
GAN and VAE used in [2]. The HiFi-GAN model was trained with
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Table 1: Fréchet audio distance (FAD) with baseline and our sys-
tems. ’raw’ indicates the system without the FAD filter, i.e., the first
100 samples from the audio generation pipeline were used. ’fil-
tered’ indicates our submitted system with the FAD filter.

Sound class Baseline [1] Ours

raw filtered

dog bark 13.411 5.835 3.816
footstep 8.109 11.209 8.227
gunshot 7.951 5.790 3.427
keyboard 5.230 3.698 2.758
moving motor vehicle 16.108 11.440 6.837
rain 13.337 7.031 5.399
sneeze cough 3.770 3.658 2.741

Average 9.702 6.952 4.744

AudioSet [13]. All the training data were segmented or padded
into 10 seconds and resampled to 16 kHz, i.e., T ′ = 160, 000.
Each audio sample was transformed into a 64-dim Mel-spectrogram
(F = 64) with a window length of 1024, and a hop length of 160.
The number of frames T was 1024 by padding 24 frames to avoid
further padding with downsampling operations in VAE and LDM.
The VAE model was trained with AudioSet [13], AudioCaps [5],
Freesound 2, and BBCSFX 3. The compression level r was 4, and
the number of channels C was 8.
LDM: We initialized our LDM using a checkpoint of Tango 4. The
model used the conditioning vector dimension d = 1024. The ini-
tial checkpoint was trained with AudioCaps [5]. For finetuning, we
used the DCASE2023 Task7 development set. Since the audio data
were sampled at 22.05 kHz and segmented in four seconds, we re-
sampled them to 16 kHz and padded them into 10 seconds. We set
N = 1000 forward diffusion steps for finetuning. Our LDM was
finetuned with the AdamW optimizer with an initial learning rate of
3e-5 and a linear decay learning rate scheduler. We finetuned the
model for 100k training iterations, with an effective batch size of
42 using seven A100 GPUs. In the inference phase, we used DDIM
[8] for 100 sampling steps and a classifier-free guidance scale of
w = 3. As our model produces a 10-second audio segment at a 16
kHz sampling rate, we extracted the first four-second segment and
resampled it to 22.05 kHz to fit the challenge rule.
Postprocessing: For each sound class, we first generated Q = 200
samples with the aforementioned audio generation pipeline. Then
the FAD filter is applied to reduce the number of samples to P =
100.

3.2. Results

Table 1 shows FAD from the evaluation set with baseline and our
systems. Without the proposed FAD filter, our system produced
better FADs in all sound classes except for the footstep class. With
the FAD filter, the FADs were significantly reduced regardless of
the sound classes. The results demonstrate that the proposed audio
generation pipeline can generate class-specific audio samples with
sufficient diversity, and that the proposed FAD filter can select a

2https://freesound.org/
3https://sound-effects.bbcrewind.co.uk
4https://huggingface.co/declare-lab/tango

subset of generated samples with the statistics of the target sound
class.

4. CONCLUSION

We submitted a system based on class-conditioned latent diffusion
model to DCASE2023 Task7: Foley sound synthesis challenge.
Based on an existing model for text-to-audio generation, we fine-
tuned our model that realizes sound-class-based conditioning. Fur-
thermore, we successfully utilized the embedding-based statistics
of target classes for filtering the generated sounds. Our submission
system achieved significantly better FAD than the baseline system.
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