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ABSTRACT

In this technical report, we describe the CP-JKU team’s sub-
mission for Task 1 Low-Complexity Acoustic Scene Classification
of the DCASE 23 challenge. We introduce a novel architecture, CP-
Mobile, with regularized receptive field and residual inverted bottle-
neck blocks. We use Knowledge Distillation to teach CP-Mobile
from an ensemble of multiple Patchout faSt Spectrogram Trans-
former (PaSST) and CP-ResNet models. To enhance cross-device
generalization performance, Freq-MixStyle and Device Impulse
Response (DIR) augmentation are applied while training teachers
and students. CP-Mobile is fine-tuned using Quantization Aware
Training and then quantized to perform computations in 8-bit preci-
sion. The improved teacher ensemble, the efficient student architec-
ture and DIR augmentation improve the results on the TAU Urban
Acoustic Scenes 2022 Mobile development dataset by around 5 per-
centage points in accuracy compared to the top-ranked submission
for Task 1 of the DCASE 22 challenge1.

Index Terms— CP-Mobile, Receptive Field Regularization,
Patchout Spectrogram Transformer (PaSST), CP-ResNet, Knowl-
edge Distillation, Quantization Aware Training, Device Impulse Re-
sponse augmentation, Freq-MixStyle

1. INTRODUCTION

In Task 1 of the DCASE 23 Challenge [1], Low-Complexity Acous-
tic Scene Classification (ASC), participants are required to design
a system that accurately predicts scene labels for 1-second au-
dio clips. Well-known challenges from previous editions of this
task [2, 3] are the recording device mismatch between train and
test sets and the model complexity limits. In addition to the hard
complexity limits in terms of model size (128 kB) and multiply-
accumulate operations (30 Million MACs), in this year’s edition,
ASC systems are ranked not only based on class-wise accuracy but
also based on model size and MACs. This introduces a new im-
portant objective: optimizing systems towards a good performance-
complexity trade-off.

Convolutional Neural Networks (CNN) are well-established
models to tackle low-complexity ASC and dominated the leader-
board in previous editions of the challenge [3–7]. Common practice
is to regularize the receptive field of CNNs [8, 9], which has been
shown to improve the generalization performance. Recently, Audio
Spectrogram Transformers achieved competitive results on multiple

1Source Code: https://github.com/fschmid56/cpjku_
dcase23

downstream tasks in the audio domain, including the Patchout FaSt
Spectrogram Transformer (PaSST) [10] achieving state-of-the-art
results on the TAU Urban Acoustic Scenes 2020 Mobile develop-
ment dataset (TAU20) [2]. Transformers are complex models and
do not scale to the complexity constraints imposed by the chal-
lenge. However, it has been shown that PaSST models are excel-
lent teachers for low-complexity CNNs [4, 11, 12], leading to the
top-ranked submission in Task 1 of the DCASE 22 challenge, and a
new state-of-the-art performance on AudioSet [13]. The top-ranked
submission for DCASE 22 Task 1 [4] involved a low-complexity
version of the CP-ResNet [8, 9] trained from a PaSST ensemble us-
ing Knowledge Distillation, and Freq-MixStyle [11, 14] to tackle
generalization to unseen devices.

This technical report describes substantial improvements over
the system outlined above. Firstly, we find that ensembling trans-
formers and CNNs forms very strong teachers, outperforming
PaSST-only teacher ensembles by a wide margin. Secondly, to im-
prove device generalization further, we apply Device Impulse Re-
sponse augmentation [15] in addition to Freq-MixStyle. Thirdly, the
main contribution is a new CNN design based on residual inverted
bottleneck blocks, including Global Response Normalization [16],
which we call CP-Mobile.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Preprocessing

For CP-Mobile, we use audio at a sampling rate of 32 kHz to com-
pute Mel spectrograms with 256 frequency bins. Short Time Fourier
Transformation (STFT) is applied with a window size of 96 ms and
a hop size of 16 ms. Increasing the window size from 64 to 96
ms and applying a 4096-point FFT leads to a slight improvement
compared to the setting in [4].

Regarding the teacher models, we match the PaSST [10] Au-
dioSet [13] pre-training settings using a window size of 25 ms and
a hop size of 10 ms and create Mel spectrograms with 128 bins. For
CP-ResNet [8], we downsample the audio to 22.05 kHz, use a hop
size of approximately 9 ms, a window size of 23 ms and 256 Mel
bins.

For all models, we randomly roll the waveform over time with
a maximum shift of 125 ms. For CP-Mobile and PaSST, we ad-
ditionally use frequency masking with a maximum size of 48 Mel
bins and apply pitch shifting by randomly changing the maximum
frequency of the Mel filter bank [17].

https://github.com/fschmid56/cpjku_dcase23
https://github.com/fschmid56/cpjku_dcase23
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2.2. Shifted Crops

The TAU Urban Acoustic Scenes 2022 Mobile development dataset
(TAU22) [2] has the same content as the TAU20 dataset, except
that the 10-second audio clips of TAU20 have been split into 1-
second audio fragments, which makes the prediction task consider-
ably harder. However, the 1-second audio fragments of the TAU22
dataset are annotated with sequence numbers, allowing for reassem-
bling the full 10-second audio clip. To increase the diversity in the
training dataset, we apply a circular shift of 0.5 seconds, split the
10-second clip into 1-second pieces again and add the shifted audio
clips to the original TAU22 dataset. Compared to random 1-second
crops at training time as used in [4], we can precompute the teacher
predictions on the standard and the shifted versions of TAU22 and
perform offline Knowledge Distillation (KD) [18], creating a much
more efficient training routine.

2.3. Freq-MixStyle and Device Impulse Response Augmenta-
tion

Freq-MixStyle (FMS) [11, 14] is a frequency-wise version of the
original MixStyle [19] that operates on the channel dimension.
FMS normalizes the frequency bands in a spectrogram and then
denormalizes them with mixed frequency statistics of two spectro-
grams. FMS is applied to a batch with a certain probability specified
by the hyperparameter pFMS and the mixing coefficient is drawn
from a Beta distribution parameterized by a hyperparameter α.

As introduced in [15], we use the 66 freely available device im-
pulse responses (DIRs) from MicIRP2 to augment the waveforms.
The recording devices in MicIRP have a very characteristic fre-
quency response, making them a good source for simulating a wide
range of different recording devices. DIR augmentation has one
hyperparameter pDIR that specifies the probability of a waveform
being convolved with a DIR.

To train the student model CP-Mobile, we use a combination
of FMS and DIR augmentation and choose the hyperparameters ac-
cording to [15] as α = 0.3, pFMS = 0.4 and pDIR = 0.6. As
specified in Section 3, we use teachers trained with different FMS
and DIR augmentation settings and ensemble them.

3. TEACHER MODELS: PASST AND CP-RESNET

Audio spectrogram transformer models such as PaSST [10] are
purely self-attention-based models, making them excellent at cap-
turing the global context of an audio clip. PaSST has shown to be
a good teacher model for low-complexity CNNs [4, 11, 12]. CP-
ResNet [8] is a receptive-field regularized CNN (RFR-CNN) that
gradually builds local features covering a spatially restricted size.

Experiments in [11] and [12] show that high-performing en-
sembles can be achieved by ensembling PaSST models trained with
varying configurations. To further increase the diversity of predic-
tions in the ensemble, we experiment with including CP-ResNet
models. In total, we train six different PaSST and six different CP-
ResNet models, including two models using only DIR, two models
using only FMS and two models using a combination of both. This
results in ensembles that include different views on the data (PaSST
– global context, CP-ResNet – local features) and different device
experts. For PaSST and CP-ResNet models we use the model con-
figurations and the training protocol described in [15].

2http://micirp.blogspot.com

Ensemble # Models Accuracy

CP-ResNet (DIR) 2 59.57
CP-ResNet (FMS) 2 63.65
CP-ResNet (DIR + FMS) 2 63.62
CP-ResNet (All) 6 64.85

PaSST (DIR) 2 62.30
PaSST (FMS) 2 62.11
PaSST (DIR + FMS) 2 63.11
PaSST (All) 6 63.63

CP-ResNet, PaSST (DIR + FMS) 4 67.84
CP-ResNet, PaSST (All) 12 68.31

Table 1: Results of training the teacher models CP-ResNet and
PaSST on TAU22 [2] and ensembling the logits. DIR refers to de-
vice impulse response augmentation, pDIR = 0.4 is used for CP-
ResNet and pDIR = 0.6 is used for PaSST. FMS refers to Freq-
MixStyle, pFMS = 0.4 is set for PaSST and pFMS = 0.8 is set for
CP-ResNet. α = 0.4 is the same for both model types. Accuracy
is calculated based on the averaged logits of # Models.

The results presented in Table 1 support our claims. For both
CP-ResNet and PaSST models, ensembling DIR, FMS, and DIR +
FMS trained models significantly boosts the accuracy, outperform-
ing the PaSST ensemble used in the top-ranked submission of last
year (62.6% accuracy) [4]. A major improvement is achieved by
ensembling CP-ResNet and PaSST logits, lifting the ensemble per-
formance to 68.31% accuracy. We generate the predictions for the
TAU22 development set and the added shifted crops described in
Section 2.2, ensemble the logits of the 12 models and reuse them to
train all our CP-Mobile students introduced in Section 4.

4. STUDENT MODEL: CP-MOBILE

Our baseline architecture is the low-complexity CP-ResNet model
described in [4]. Different versions of the CP-ResNet performed
well in previous editions of the challenge [1, 2, 5, 17]. We redesign
the model to increase its representation capability and efficiency and
call the final model CP-Mobile (CPM). The following steps evolve
a CP-ResNet into a CPM:

• The most expensive operations in CP-ResNet are 3x3 convo-
lutions. We replace each 3x3 convolution with a residual in-
verted bottleneck block (CPM block) similar to the design of
MobileNets [20, 21] and EfficientNets [22, 23].

• We experiment with Relaxed Instance Frequency-wise Nor-
malization [14], SubSpectral Normalization [24] and Global
Response Normalization (GRN) [16] integrated into different
positions in the CPM blocks. While we found substantial im-
provements for multiple normalization and position combina-
tions, using GRN after the final ReLU activation leads to the
highest performance gain.

• Instead of max pooling layers, we use strided convolutions to
downsample the spatial dimensions.

• In the introduced CPM blocks, we only use shortcuts if the
number of input and output channels are matching, thus we
save the complexity for shortcut paths that require a pointwise
upsampling convolution.

http://micirp.blogspot.com
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• We find that the input convolution operating on high spatial di-
mensions consumes a high amount of MACs. To reduce this
amount, we split the input convolution into two separate con-
volutions and use a stride of 2 for both.

Table 2 shows the overall architecture of CPM. CPM’s com-
plexity scales in four dimensions: number of blocks (depth), base
channels (BC), network width (CM) and expansion rate of inverted
bottlenecks (EXP). The depth of the network and the strides deter-
mine the receptive field of the model. The overall spatial downsam-
pling factor and the position of the strided convolutions are inspired
by the original max pooling layer positions in the low-complexity
CP-ResNet [4]. At the early stages of model design, we experi-
mentally fixed the depth to 7 CPM blocks and with it the model’s
receptive field.

Table 2: CP-Mobile Architecture

INPUT OPERATOR STRIDE

256 X 64 X 1 CONV2D@3X3, BN, RELU 2 X 2
128 X 32 X BC/4 CONV2D@3X3, BN, RELU 2 X 2

64 X 16 X BC CPM BLOCK S 1 X 1
64 X 16 X BC CPM BLOCK D 2 X 2
32 X 8 X BC CPM BLOCK S 1 X 1

32 X 8 X BC CPM BLOCK T 2 X 1
16 X 8 X BC*CM CPM BLOCK S 1 X 1

16 X 8 X BC*CM CPM BLOCK T 1 X 1

16 X 8 X BC*CM² CONV2D@1X1, BN
16 X 8 X CLS AVG. POOL

INPUT: FREQUENCY BANDS X TIME FRAMES X CHANNELS
CONV2D@KXK: CONV2D WITH KERNEL SIZE KXK
BC: BASE CHANNELS, CM: CHANNELS MULTIPLIER
CPM BLOCK S/D/T: STANDARD/DOWNSAMPLING/TRANSITION
CLS: NUMBER OF CLASSES

Figure 1 depicts the structure of a CPM block. A standard con-
volution layer is factorized into a pointwise expansion convolution,
a depthwise convolutional and a pointwise projection convolution.
The depthwise convolution operates on the expanded channel repre-
sentation, which has the size of the number of block input channels
times the scaling factor EXP. We differentiate between Transition,
Standard and Spatial Downsampling blocks (CPM blocks T, S, D).
CPM block T is used to increase the channel dimension, uses no
residual connection and can be used with a strided depthwise con-
volution. CPM blocks S and D both have matching input and output
channel dimensions and use a residual connection. CPM block D
uses average pooling with a kernel size of 3 and a stride of 2 as the
shortcut path to match the spatial dimensions of the block output.
GRN [16] is applied before the final ReLU activation. GRN calcu-
lates a normalization value Ni for each channel, where ||Xi|| is the
L2-norm of channel i:

Ni =
||Xi||∑C

c ||Xc||/C
(1)

The normalization values Ni are used to calibrate the channel
responses, including two trainable parameters γ and β and a resid-

ual connection: X̂i = γ ∗ Ni ∗ Xi + β + Xi. In the original pa-
per [16], GRN is used to increase the feature diversity across chan-
nels. Our main consideration for using GRN in CPM is to avoid
feature redundancies in models with restricted capacity.

Figure 1: CPM blocks: (1) Transition Block (input channels ̸= out-
put channels), (2) Standard Block, (3) Spatial Downsampling Block
(S denotes stride)

5. KNOWLEDGE DISTILLATION FRAMEWORK

Similar to [4,11,12], CPM is trained on both the one-hot encoded la-
bels and the pre-computed predictions of the ensemble CP-Resnet,
PaSST (All) described in Table 1. Compared to the hard labels, the
teacher soft labels describe blurred decision boundaries and estab-
lish important similarity structures between classes. The loss, con-
sisting of a combination of hard label loss Ll and distillation loss
Lkd, is depicted in Equation 2. λ is a weight that trades off label and
distillation loss, zS and zT are student and teacher logits and τ is a
temperature to control the sharpness of the probability distributions
created by the softmax activation δ. Ll is the Cross-Entropy loss
and Kullback Leibler divergence is used as distillation loss Lkd.

Loss = λLl(δ(zS), y) + (1− λ)τ2Lkd(δ(zS/τ), δ(zT /τ)) (2)

5.1. Experimental Setup

We train our models for 75 epochs on the combined standard and
shifted crops datasets. We use a batch size of 256, Adam opti-
mizer [25] and a learning rate scheduler that increases the learning
rate to its peak value until epoch 7, and linearly decreases it from
epoch 25 to 67 to 0.5% of the peak value. The peak learning rate
varies for models of different sizes and is listed in Table 3. For
KD [18], we use τ = 2 and found that setting a high weight on the
distillation loss with λ = 0.02 works best.

6. QUANTIZATION AWARE TRAINING

After completing the training routine outlined in 5.1, we fine-
tune our models for 24 epochs using Quantization Aware Training
(QAT) [26]. In this fine-tuning phase, we use a peak learning rate of
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ID BC CM EXP LR Pruned Model Size (B) MMACs Acc. Unseen Acc. Quant. Acc.

S1 8 2.1 1.7 0.003 ✗ 5,722 1.58 54.66 51.83 52.61
S2 16 1.5 1.75 0.003 ✗ 12,310 4.35 59.50 56.76 58.42
S3 24 1.5 1.9 0.002 ✗ 30,106 9.64 62.34 58.44 61.77
S4 32 1.7 1.9 0.001 ✓ 54,182 16.80 65.16 61.26 64.08

Table 3: Model configurations submitted to the challenge. BC, CM, EXP are model scaling hyperparameters introduced in Section 4. The
learning rate LR needs to be increased for smaller models to achieve high performance. Model Size is given in Bytes after quantization
and MMACs specifies million multiply-accumulate operations required for the inference of a 1-second audio clip. Unseen Acc. denotes the
accuracy on recording devices unseen during training. All results are averages over 3 independent runs and the last 4 epochs of training.

ID Training (kWh) Inference (kWh)

S1 1.889 0.033

S2 1.96 0.035

S3 2.125 0.037

S4 3.56 0.036

Table 4: Consumed energy of our four submissions (S1-S4) during
training and inference. The baseline reference value is 0.236 kWh.

5e−5 and linearly decrease it to 10% until epoch 16. All Conv2d +
BN + ReLU combinations are fused into a single layer and we use
PyTorch’s [27] ’fbgemm’ quantization config. In the forward pass,
we perform all computations in int8 except for the computations
performed in the GRN layer.

We note that CPM is more difficult to quantize than CP-ResNet,
for which Post-Training Static Quantization is sufficient to approx-
imately retain floating point performance. We also observed that
losses in accuracy are more severe for smaller models.

7. ENERGY CONSUMPTION

To measure the energy consumption during training and inference,
we use a system with a 16-core 11th Gen Intel(R) Core(TM) i7-
11700 @ 2.50GHz CPU, 32 GB of RAM and an NVIDIA GeForce
RTX 3090 GPU. For training, we sum up the consumed energy for
the standard training phase, a possible pruning phase as described
in Section 8 and the quantization-aware fine-tuning phase. We set
the batch size to 1 for measuring the energy consumption during
the inference of all files in the evaluation set. We only use the CPU
since quantized model inference is not supported on GPU in Py-
Torch. We computed the reference value for the provided baseline
on the same system, resulting in 0.236 kWh of consumed energy.
We report the energy values for our submitted models (S1-S4 as
described in detail in Table 3) in Table 4.

8. SUBMISSIONS AND RESULTS

As the ranking of systems in the challenge is not only based on
accuracy but also model size and MACs, we tried to find the mod-
els with the best performance-complexity trade-off. In Table 3, we
present CPMs in four different configurations that are our final sub-
missions (S1-S4) to the challenge. The models differ in terms of the
scaling dimensions BC, CM, and EXP as introduced in Section 4,
and the learning rates need to be increased for smaller models.

Firstly, we fixed the BC dimension by scaling models with dif-
ferent BC values along the CM and EXP dimensions. We found,

for instance, that models with BC=8 have the best performance-
complexity trade-off for models below 10k parameters. Similarly,
experiments showed that BC=32 dominates the range of models
above 50k parameters and in between the sweet spots of BC=16 and
BC=24 are located. For all values of BC, we found that the perfor-
mance gain of increasing CM and EXP quickly saturates. These di-
minishing returns allow us to use models of low complexity that still
achieve high performance. Compared to a system that attains the
complexity limits (65.66% accuracy), S4 only sacrifices 0.5% accu-
racy (before quantization) while having around 50% of MACs and
less than 50% of parameters. S2 is comparable to the performance
of the top-ranked system of the DCASE 22 challenge [4] while hav-
ing about 10 times fewer parameters and more than 6 times fewer
MACs.

For the final submission, we train the selected models (S1-S4)
on all audio clips in the development set.

Pruning: We also experimented with pruning in S4. In partic-
ular, we apply structured pruning to a model that attains the com-
plexity limits. We prune each CPM block based on the L2-norm
of filters in the depth-wise convolution layer and remove the cor-
responding filters from the expansion and projection convolutions.
Additionally, we use pruning to reduce the number of output chan-
nels of a block and remove the corresponding filters from the first
convolution of the following block. After training, we prune all
weights in a single step and re-train the resulting network using the
same schedule. This procedure results, on average, in an improve-
ment of around 1.2% accuracy compared to training the small model
from scratch.

9. CONCLUSION

In this technical report, we describe the CP-JKU submission to Task
1 of the DCASE 23 challenge. We show that our system outper-
forms the top-ranked system of the DCASE 22 challenge by 5%
in terms of accuracy and we can match its performance with only
10% of parameters and 6 times less MACs. The main improvement
is attributable to an efficient, novel architecture, CP-Mobile, con-
structed of residual inverted bottleneck blocks and global response
normalization. Additionally, our results substantially improve by
the finding that ensembling Audio transformers and CNNs form
strong teacher ensembles. We use an external device impulse re-
sponse dataset to improve our system’s robustness to unseen devices
and we increase the FFT window size and add shifted crops to the
original TAU23 dataset to further boost the performance.
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