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ABSTRACT

The objective of this project is to examine audio signals utilizing
natural language to capture their complex characteristics. This ini-
tiative is part of Task 6 in the DCASE 2023 Competition and con-
sists of two subtasks. The first subtask is Automated Audio Cap-
tioning, which generates text descriptions of audio content. This
task involves the intermodal processing of an audio signal as input
and a text description as output. Our best-performing model for this
uses the PANN architecture [1] with the CNN-14 feature extractor
and BART [2] encoder and decoder. The second subtask is called
Language-Based Audio Retrieval, where the system retrieves au-
dio signals by searching for their sound content descriptions. The
queries for this subtask are human-generated audio captions. In this
task, our best-performing model uses CLAP [3] audio embeddings
and Roberta text embeddings [4]. This document presents a sum-
mary of our work done for this challenge.

Index Terms— CLAP embeddings, RoBERTa text embed-
dings, audio captioning, PANNs

1. INTRODUCTION

1.1. Automated Audio Captioning

Automated audio captioning, or AAC, is a technology that generates
textual descriptions of audio signals using natural language. Unlike
speech-to-text transcription, AAC is an inter-modal translation task
that captures not only the physical characteristics of sounds but also
abstract concepts and high-level knowledge. This allows for a wide
range of applications, from automatic content descriptions to so-
phisticated machine-to-machine interactions focused on content.

Task 6 of the DCASE 2023 Challenge builds on the previous
year’s challenge and aims to explore how machines can under-
stand higher-level and human-perceived information from general
sounds. The challenge requires participants to develop AAC models
that accurately generate natural language descriptions of audio sig-
nals and understand the semantic meaning of sounds in various sce-
narios. The submissions will be evaluated based on a combination
of SPIDEr and a fluency error detection model, along with tradi-
tional metrics such as METEOR, CIDEr, and SPICE. The ultimate
goal of this challenge is to create AAC models that can improve
accessibility for people with hearing disabilities and transform the
way we interact with audio content.

1.2. Language Based Audio Retrieval

The subtask on language-based audio retrieval at the DCASE 2023
Challenge is an extension of the previous year’s task, aimed at ad-
dressing the limitations of binary relevance assessment for audio
files. The objective of this subtask is to retrieve relevant audio files
from a dataset based on their sound content textual descriptions, or
audio captions, which are provided by humans. The goal is to de-
velop methods that can rank audio signals in a fixed dataset based
on their match to the given description, allowing for more sophisti-
cated machine-to-human interactions with a focus on content. This
subtask is of great importance as it helps to bridge the gap between
the human perception of sounds and the ability of machines to un-
derstand and retrieve relevant audio files based on that perception.

The 2023 Challenge introduces graded relevance scores, which
are crowdsourced to allow for a more nuanced assessment of the rel-
evance of audio files. Mean Average Precision (mAP)@10 is used
as a primary metric and recall@k (including recall@1, recall@5,
and recall@10) serve as secondary metrics. These metrics are cru-
cial in measuring the effectiveness of the language-based audio re-
trieval methods developed by participants in the challenge.

By emphasizing the importance of language-based audio re-
trieval, this subtask encourages further exploration and innovation
in the field of sound processing and analysis. It provides a plat-
form for researchers and practitioners to develop and refine methods
that can bridge the gap between human perception and machine un-
derstanding of sound content, with potential applications in a wide
range of fields, including multimedia content creation, search and
retrieval, and human-machine interaction.

2. DATASET

Clotho v2 is an audio dataset that extends the original Clotho
dataset. It comprises 6972 audio samples, each with five captions,
and is built with a focus on audio content and caption diversity. The
dataset is divided into four splits: development, validation, eval-
uation, and testing, with audio samples publicly available for all
four splits, but captions available only for the development, val-
idation, and evaluation splits. The audio samples have durations
ranging from 10s to 30s, with no spelling errors and good quality.
The content of the audio samples is diverse, including ambiance,
animal sounds, crowd noises, machines and engines, and devices.
The splits are created using multi-label stratification and ensure that
there is no overlap in audio samples or words between the different
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splits. The dataset is suitable for training and evaluating methods
for audio captioning and other related tasks. In total, there are 6972
audio clips and 34,860 captions.

Figure 1: PANN architecture

3. SYSTEM DESCRIPTION

Both of the tasks in this project have a state-of-the-art baseline sys-
tem available for those participating in the challenge, provided as a
starting point to build better solutions.

The baseline system for the first task of Automated Audio Cap-
tioning is a sequence-to-sequence model implemented using Py-
Torch. The system is divided into four parts:

Figure 2: System overview of Task 6a

• Caption Evaluation
• Dataset Pre-Processing/feature extraction
• Encoder that takes the pre-trained audio embeddings as input.
• Decoder that returns the audio captions

Caption evaluation is performed using a modified version of the
caption evaluation tools from the MS COCO challenge.

For dataset pre-processing, the Clotho dataset examples are
available as WAV and CSV files, and features have to be extracted
from the audio clips, and captions in CSV files have to be pre-
processed, such as removing punctuation. The extracted features
and processed words are then matched as input-output pairs.

In addition to the baseline system provided by the challenge or-
ganizers, we also use the top submission of the previous iteration as

Figure 3: System overview of Task 6b

a baseline to compare against. The top submission for the task of
Automated Audio Captioning is an audio encoder taken after train-
ing the bi-encoder with text and audio encoders for the task of audio
retrieval. This feature extractor is used with a sequence to sequence
model trained on Clotho. In our tests, we used a CNN 14 audio
encoder for this baseline.

The baseline system for the Audio Retrieval System uses a Pre-
trained Audio Neural Network [1] with 10-layer CNN architecture
that is pre-trained on AudioSet dataset and fine-tuned on Clotho
Dataset. The text encoder used in the baseline is the all-mpnet-
base-v2(Sentence-BERT) model. The text encoder is frozen during
training and only the PANN architecture is trained.

3.1. Model Description

For the first task, the input can be denoted as X ∈ RT×Nfeatures

where T is the number of frames and Nfeatures is the number of
features. The output can be denoted as Y ∈ RI×Lwords where I is
the number of captions and Lwords is the length of words.

The baseline system uses a BART encoder and BART decoder
as the text caption module. The encoder is a fully-convolutional
network (PANNs CNN14) as described in Fig. 2 trained as part of
the baseline of task 6b on audio retrieval, explained further in this
report. The final temporal average and dense layers are omitted to
obtain sequences of audio embeddings with a dimension of 2048.
These embeddings are then transformed frame-wise by an affine
layer, reducing the dimension to 768, and fed to the decoder.

The decoder uses encoder outputs to generate the caption in
an autoregressive manner. Previously generated words are tok-
enized and transformed into embeddings as inputs to the decoder.
In the baseline model, the tokenizer is pre-trained with a byte-
pair-encoding process, where each token corresponds to a sub-word
from the model vocabulary instead of a full English word. Each to-
ken in the past sequence is associated with a feature vector through
an embedding map and input to the decoder. Each layer of the de-
coder attends on the previously generated tokens with self-attention,
as well as to the entire encoder output sequence with cross-attention.
A classifier head consisting of one linear layer with softmax activa-
tion outputs a probability for each token of the vocabulary.

The system overview for the audio captioning pipeline is pre-
sented in Figure 3. Raw audio files are first processed by a feature
extractor, and then the resulting features are passed to an encoder.
The encoder generates a representation of the audio, which is then
passed to a decoder to produce the corresponding text caption for
the audio. This process enables the system to automatically gener-
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ate captions for audio files, making it useful for tasks such as video
indexing, content retrieval, and accessibility for people with hearing
impairments.

The audio retrieval task matches audio files with relevant text
captions using a dual encoder architecture that encodes both modal-
ities. This cross-modal architecture is trained using joint loss met-
rics to improve system performance. Figure 3 provides an overview
of the system for audio retrieval. In training, the pre-trained audio
and text embeddings are fine-tuned using the InfoNCE loss func-
tion, which is used to learn the relative order of audio-text pairs.
During retrieval, the dot product is used to calculate the similarity
between audio and text pairs to identify the top matches for the cap-
tion. By using these methods, the accuracy of the audio retrieval
task is enhanced, and the model can effectively match audio with
relevant text captions.

3.2. Metrics

3.2.1. Automated Audio Captioning

For task 6a, there are five different metrics used as defined below.

• BLEU1, BLEU2, BLEU3: measures the similarity between the
generated text and the reference texts based on the weighted
geometric mean of n-grams of different lengths

• ROUGEl: measures the similarity between the generated text
and the reference texts based on F-measures computed by
counting the longest common subsequence

• METEOR: measures the similarity between the generated text
and the reference texts based on the harmonic mean of preci-
sion and recall using explicit word-to-word matches

• CIDEr: measures the similarity between the generated text and
the reference texts based on the cosine similarity between term
frequency and inverse document frequency

• SPICE: measures the similarity between the generated text and
the reference texts based on F-score calculated using tuples in
scene graphs created for the captions

• SPIDEr: a metric that combines the semantic stability of
SPICE and the fluency of CIDEr and uses Monte Carlo roll-
outs for optimization

3.2.2. Language-Based Audio Retrieval

For task 6b, there are four different metrics and they are defined
below.

• R@1: This metric finds recall score among the top-1 retrieved
result, averaged across all caption queries

• R@5: This metric finds recall score among the top-5 retrieved
result, averaged across all caption queries

• R@10: This metric finds recall score among the top-5 retrieved
result, averaged across all caption queries

• mAP@10:This metric computes the average precision among
the top-10 retrieved results, averaged across all caption queries

3.3. Loss functions

3.3.1. Cross Entropy Loss

For the first task, a cross-entropy loss is used to train the model,
where yt is the ground truth word at time step t, as shown in equa-

tion 1.

LCE = − 1

T

T∑
t=1

log(p(yt|y1:t−1, θ)) (1)

3.3.2. InfoNCE loss

For the second task i.e Task 6b audio, the baseline system uses the
InfoNCE loss function. NCE stands for Noise-Contrastive Estima-
tion, and this is a type of contrastive loss function that is gener-
ally used for self-supervised learning. This loss is used to learn a
meaningful representation of the data. Given a set X of n random
samples,

X = {x1, . . . , xN} (2)

containing one positive sample from p(xt+k|ct) and N-1 negative
samples from the ’proposal’ distribution p(xt+k), the loss function
can be written as

LN = −E

[
log

fk (xt+k, ct)∑
xj∈X fk (xj , ct)

]
(3)

Optimizing this loss results in fk(xt+k, ct) which estimates the
density ratio as

fk (xt+k, ct) ∝
p (xt+k | ct)
p (xt+k)

(4)

3.4. Experimental Settings

The baseline system uses specific hyperparameters for feature ex-
traction and caption processing, including a log-mel spectrogram
with 64 mel bands, removal of punctuation, lowercase letters, tok-
enization, pre-pending of a start-of-sentence token, and appending
of an end-of-sentence token. The deep neural network used in the
baseline system has specific hyperparameters, including the CNN14
model trained on audio retrieval, an affine layer, six transformer de-
coder layers, and an affine layer with softmax activation. Parameter
optimization is performed using AdamW on the cross-entropy loss
for 20 epochs with a batch size of 4 examples and gradient accumu-
lation of 2 steps, and the learning rate is 10-5.

All input audio features and captions in a batch are padded to a
fixed length for convenient batching, with attention masks provided
to the model to ignore padded elements. The baseline system also
provides options for beam search and greedy decoding during eval-
uation. The entire training process takes approximately 2 hours on
a single GPU (GTX 1080ti). The evaluation and inference process
on the given datasets takes 5 minutes on a T4 GPU.

Another baseline implementation corresponding to the top sub-
mission of the previous iteration of the challenge was run. Here, the
audio encoder used was CNN14 model trained on audio retrieval.
The whole captioning model except the feature extractor is trained
for 25 epochs with a batch size of 64 using the Adam optimizer.

4. EXPERIMENTS

4.1. Automated Audio Captioning

Three components of the pipeline which are the feature extractor,
encoder, and decoder were altered for experimentation. For the fea-
ture extractor, CNN14 and CLAP were used. For the encoder, the
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networks experimented with were BART and a Bi-directional GRU
[5].

For this task, the baseline system uses a pre-trained CNN14
audio feature extractor taken from training on task 6B. The system
also uses BART for the encoder and decoder.

The audio feature extractor for our experiments was frozen dur-
ing training as it was taken from task 6 B and only the encoder and
decoder are trained.

4.2. Language-Based Audio Retrieval

For Task 6b, The baseline system uses a dot product to find the
similarity between an audio signal and a textual description. To
optimize the system, InfoNCE loss is used. Each epoch takes 6
minutes and evaluation since the retrieval system needs to build the
score for every pair and that’s a O(n2) operation, resulting in the
entire scoring taking about 5 hours.

Moreover, several Audio and Text embeddings were tried.

4.2.1. Audio Embeddings

Pretrained Audio Neural Network (PANN) - PANN Embeddings
[1] is a fully-convolutional network based on 14 layered CNN net-
works. This is the one given in the baseline

OpenL3 Embeddings - OpenL3 embeddings [6] is a self-
supervised learning approach that is trained on audio-visual cor-
respondence in videos. This embedding can work for many down-
stream tasks such as audio classification.

Audio Spectrogram Transformer (AST) - AST [7] is
convolution-free approach mainly used for audio classification.
This is an attention-based model for audio classification.

4.2.2. Text Embeddings

SBERT Embeddings - SBERT embeddings [8] utilizes siamese
and triplet network structures to get similar and meaningful sen-
tence embeddings and compare them using cosine similarity.

RoBERTa Embeddings - RoBERTa embeddings [4] is a
BERT-based model that is trained on a large corpus of data. The
main difference of RoBERTa is removing the next-sentence pre-
training objective and training with a larger mini-batch and learning
rate.

DistilBERT Embeddings - DistilBERT embeddings [9] is a
compressed and lighter version of the BERT language model, which
retains most of its performance while requiring fewer computational
resources.

XLNet Embeddings - XLNet embeddings [10] is a language
model that leverages an autoregressive formulation in combination
with permutation-based training to achieve state-of-the-art results
on a range of natural language processing tasks.

MPNet-MultiQA Embeddings - MPNet-MultiQA embed-
dings [10] utilize a multitask learning approach to jointly train a
transformer-based language model on multiple question-answering
tasks, resulting in improved performance across tasks.

5. RESULTS

5.1. Automated Audio Captioning

The results of this task are shown in Table 4.1. From here, it can be
seen that the model that performed the best was the baseline which

had a CNN14 feature extractor combined with a BART encoder and
a BART decoder which is a transformer encoder and decoder model.

Using CLAP as a feature extractor resulted in very poor perfor-
mance across all metrics. Using a simple 2 layer transformer in the
decoder did not perform as well as the best model and even using
an ensemble of techniques where the decoder was different (trans-
formers and GRU)[5] in the decoder did not improve performance
significantly.

In all these cases, the audio encoder was trained on the
Language-Based Audio Retrieval task and was frozen for the au-
dio captioning task.

5.2. Language-Based Audio Retrieval

For this task, the model creates a database of audio and matches it
with the text description. This also helps generate all the metrics
such as mAP, R1,R5, and R10. Table 4.2.1 shows the results for the
different experiments. From the table, it can be seen that CLAP em-
beddings along with RoBERTa performed the best compared to all
the other models. This can be mainly attributed to the way CLAP
embeddings were trained. CLAP embeddings learn acoustic con-
cepts from natural language supervision which is relevant to our
task. For the text embeddings, since RoBERTa is trained on huge
data, it is able to better represent the text description.

6. CONCLUSION

This project has familiarized us with the domain of automated au-
dio captioning and language-based audio retrieval. We were able to
gain a deeper understanding of each task and understand how au-
dio features are correlated with text features to either generate rel-
evant captions for given audio clips or retrieve relevant audio clips
given a text query. We observed that the best-performing model for
language-based audio retrieval uses CLAP audio embeddings with
RoBERTa text embeddings, while a PANN CNN-14 model with
BART based encoder and decoder works best to generate captions
for audio clips.

Going forward, more extensive exploration and evaluations can
help converge to an improved solution. We can modify the archi-
tecture of the encoder and decoder in the first task, or the feature
architecture model, to generate better captions.
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