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ABSTRACT

Localizing sounds and detecting events in different room environ-
ments is a difficult task, mainly due to the wide range of reflec-
tions and reverberations. When training neural network models with
sounds recorded in only a few room environments, there is a ten-
dency for the models to become overly specialized to those specific
environments, resulting in overfitting. To address this overfitting
issue, we propose divided spectro-temporal attention. In compar-
ison to the baseline method, which utilizes a convolutional recur-
rent neural network (CRNN) followed by a temporal multi-head
self-attention layer (MHSA), we introduce a separate spectral at-
tention layer that aggregates spectral features prior to the temporal
MHSA. To achieve efficient spectral attention, we reduce the fre-
quency pooling size in the convolutional encoder of the baseline to
obtain a 3D tensor that incorporates information about frequency,
time, and channel. As a result, we can implement spectral atten-
tion with channel embeddings, which is not possible in the baseline
method dealing with only temporal context in the RNN and MHSA
layers. We demonstrate that the proposed divided spectro-temporal
attention significantly improves the performance of sound event de-
tection and localization scores for real test data from the STARSS23
development dataset. Additionally, we show that various data aug-
mentations, such as frameshift, time masking, channel swapping,
and moderate mix-up, along with the use of external data, contribute
to the overall improvement in SELD performance.

Index Terms— Sound Event Localization and Detection,
Multi-Head Self-Attention, Convolutional Neural Network, Di-
vided Spectral-Temporal Attention

1. INTRODUCTION

The sound event localization and detection (SELD) task in DCASE
challenge task 3 involves the classification of 13 different sound
events and the estimation of their direction of arrival (DoA) [1].
Given the diverse nature of audio signals, characterized by a wide
range of reflections and reverberations, addressing the issue of over-
fitting deep neural networks (DNNs) to specific room environments
within the training dataset is of utmost importance. In previous
years till 2021, the DCASE challenge task 3 has not permitted the
utilization of external data. However, the use of external data and
the incorporation of various types of augmentation emerged as the
key contributions to the challenge of the DCASE2022 challenge.

On the other hand, there is a growing trend of utilizing attention

mechanisms separately across different dimensions, as evidenced
in studies such as [2], [3], and [4]. In the domain of video clas-
sification, [2] extensively investigated different forms of attention
and concluded that allocating attention to both temporal and spa-
tial aspects independently yields valuable results. Similarly, for
speech enhancement tasks, DASformer [3] proposed the applica-
tion of frame-wise spectral attention and band-wise temporal atten-
tion. Furthermore, DeFT-AN [4] introduced a block composed of
three distinct layers: a channel-related dense block, a frequency-
related conformer, and a temporal conformer, which were tailored
for speech enhancement.

Hence, we adopt the concept of divided attention to the spectro-
temporal dimension in the SELD task and demonstrate its improve-
ment over the baseline model that solely considers temporal context.
We also utilize both the external data synthesized with AudioSet [5]
and augmentation methods such as frameshift [6], time masking [7],
channel swap [8], and moderate mix-up [9], to improve the SELD
performance along with the proposed DNN model.

2. PROPOSED METHOD

2.1. Implementation Details

Among the first-order Ambisonics (FoA) and tetrahedral micro-
phone (MIC) audio formats available in STARSS23, the proposed
model utilizes the FoA array signals. The audio signals having a
sampling frequency of 24 kHz underwent a short-time Fourier trans-
form with a hop length of 0.02s and a window size of 0.04s. Subse-
quently, the spectrograms were transformed into log-mel scales us-
ing 64 mel filter banks. Also, intensity vectors were calculated by
multiplying the complex conjugation of the omnidirectional spec-
trograms, with the other directional array spectrograms, and taking
the real part of the multiplication. These intensity vectors were then
normalized using the total energy of the FoA signals. Therefore,
the total number of input features was 7 channels consisting of four
original spectrograms and three intensity components. Target DoA
labels were converted into ACCDOA [10] and multi-ACCDOA [11]
formats. Experimental evaluations were carried out for both target
formats. The model was trained for 500 epochs with a batch size of
128. The Adam optimizer was employed, using a learning rate of
0.001, β1 = 0.9, and β2 = 0.999. The input time length for the
model was set to 5 seconds.
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Table 1: Features of audio, preprocessing, and input
Audio Features

Audio Format FoA (4 channels)
Sampling Frequency 24kHz

Preprocessing Features
Hop Size 0.02s
Window Size 0.04s
Number of Mel Filter Banks 64
Target Label Resolution 0.1s

Input Features
Features Log-mel, Intensity Vectors
Batch Size (B) 128
Input Feature Length (T) 250
Input Channel (C) 7
Mel Frequency Bins (F) 64

2.2. External Data

STARSS23 [12] is an expanded version of STARSS22 [13] addi-
tionally including real recordings captured in new room environ-
ments. While this additional data introduce more room diversity to
the development training (dev-train) dataset, the development test
(dev-test) data also have more diversity. Consequently, it remains
challenging to prevent the overfitting of a model to the room im-
pulse responses (RIRs) present in the training dataset. Therefore,
it is still necessary to use an external dataset to mitigate overfit-
ting on the training data. In this regard, AudioSet [5] was utilized to
synthesize external data through the convolution with RIRs in TAU-
SRIR [14] using the generator from [15], in addition to the official
synthetic dataset [16] based on FSD50k [17]. The balanced dataset
from AudioSet [5] was utilized to ensure an equitable number of
synthetic data across different classes. A total of 6 hours of the ad-
ditional dataset with the maximum number of overlapping objects
of two were synthesized and used for the training process along with
the official synthetic data [16].

2.3. Data Augmentation

Since synthetic data often exhibit different data distributions com-
pared to real recordings, it is beneficial to incorporate data aug-
mentation along with external data. In light of this, we integrated
various augmentations that have been proven to be effective for the
SELD task, as demonstrated in [9]. These augmentations include
frameshift [6], which involves shifting both the feature and label
along the time axis using a randomly determined shifting parameter.
Additionally, we employed time masking [7], randomly masking
features and DoA labels along the time axis. Furthermore, channel
swap [8] was utilized as a spatial augmentation method. Lastly, we
incorporated moderate mix-up [9], an enhanced version of mix-up
[18] specifically designed for the SELD task. This technique ran-
domly selects a mixing ratio to blend two spectrograms and selects
only one DoA with the larger mixing ratio as the new target label.
All four augmentation methods were randomly selected and applied
with random parameters generated for every batch and iteration.

2.4. Divided Spectro-Temporal (DST) Attention

The baseline model for DCASE2023 challenge task 3 [19] in-
corporates several key components: convolutional blocks, bi-

Figure 1: Architecture of Divided Spetro-Temporal Attention
Model

directional gated recurrent units (GRU), and multi-head self-
attentions (MHSA). The convolutional blocks are responsible for
amplifying the input channels from seven to 64, while also employ-
ing max pooling after each convolutional operation to reduce the
spectral dimension to two. Additionally, to align the temporal in-
formation with the number of target labels, time pooling is utilized.
The size of the time pooling kernel for the three convolutional lay-
ers is set to [5, 1, 1], respectively. The GRU and MHSA layers are
specifically designed to capture and understand the temporal con-
text from the spectral and channel embeddings.

As a modification to enable the model to learn spectral informa-
tion from the embeddings, we propose divided spectro-temporal at-
tention for SELD, as depicted in Fig. 1. This approach allows inde-
pendent spectral attention from the channel embedding (M = 64),
separate from temporal attention. We reduced the kernel size of the
frequency pooling layer to retain spectral information that can be
used in the attention layer. The output from the convolution block of
size (batch, channel, time, frequency)= [B, M, T/5, F ′] was then
permuted for the divided spectro-temporal (DST) attention layer,
such that the temporal dimension is merged to the batch dimension
([BT/5, F ′, M ]). Then, spectral-MHSA (S-MHSA) was applied
through attention maps of size (F ′ × F ′). The output from the
S-MHSA layer was then merged with the input via the skip connec-
tion. The merged signal was then processed by the dropout layer
and layer normalization. For the temporal-MHSA (T-MHSA), the
frequency and time dimensions were swapped to yield the tensor
size of [BF ′, T/5, M ]. T-MHSA was then applied using attention
maps of size (T/5 × T/5), followed by the addition of attention
input, dropout, and layer normalization. The number of heads for
MHSA was eight, and DST attention layers were repeated twice.
The output of the final DST attention layer was reshaped to have
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Table 2: Training Parameters. In frequency pooling, [c1, c2, c3]
represents pooling sizes in three convolution layers, respectively.

Model Frequency Pooling Spectral Dim. (F’)
Baseline [4,2,2] 2

DST [4,2,1] 8
Attention [2,2,1] 16

[2,1,1] 32
[1,1,1] 64

the size [B, T/5, F ′M ] and fed into the two linear layers. The lin-
ear layers then reduced the size of embedding from F ′M to that of
the target embedding, which is 39 for ACCDOA and 117 for multi-
ACCDOA. The size of the spectral attention affects the SELD per-
formance as presented in Table 4. The size of spectral dimension
was varied (F ′ = 8, 16, 32, 64) by reducing the frequency pooling
size as presented in Table 2. The final model was determined to
have F ′ = 16.

3. RESULTS

The investigation results on DST attention, augmentation methods,
and utilization of external data are summarized in Table 3. The
results demonstrate that incorporating DST attention significantly
enhances the SELD performance compared to the baseline model
for both the single-ACCDOA and multi-ACCDOA tasks. More-
over, the performance consistently improves when augmentation
techniques are applied, and these gains are further amplified when
external data is employed.

Additionally, as discussed in Section 2.4, the size of spectral
attention has an impact on SELD performance (Table 4). When the
spectral dimension size is increased, the SELD score is improved
for all cases of multi-ACCDOA training and up to F ′ = 16 for
single-ACCDOA training, compared to the baseline shown in Ta-
ble 3. However, increasing the spectral dimension beyond F ′ = 16
for the single-ACCDOA yields negative effects. It is worth noting
that excessive spectral dimension (F ′ > 16) reduces the perfor-
mance.

In Table 4, we can see that utilizing multi-ACCDOA outper-
forms single-ACCDOA when no augmentation or external data are
involved with the training. However, with augmentation and ex-
ternal data, employing single-ACCDOA yields better outcomes, as
shown in Table 3. Consequently, the final submitted version is the
model trained using single-ACCDOA, four types of augmentation
techniques, six hours of additional external data, and a spectral di-
mension size of 16 for the DST attention model.

The SELD performances of the submitted models on the dev-
test data are displayed in Table 5. Submission 2 is the model trained
up to epoch 500, while submission 1 is a refinement of submission
2 through the training up to 700 epochs. On the other hand, sub-
mission 3 is the same model as submission 2 but is trained with
different random initializations. It is noteworthy that all three sub-
missions surpass the baseline model in terms of both event detec-
tion and localization, showing improved performances in all four
metrics.

4. CONCLUSION

This technical report introduces DST attention for the SELD task,
which demonstrates superior performance compared to the baseline

Table 3: Experimental results of the proposed DST attention model
on dev-test data in comparison with the baseline model.

Model ACC-
DOA Aug. Ext.

Data
SELD
Score ER F-score LE LR

Baseline Multi - - 0.4791 0.570 29.90 22.00 47.70
Single - - 0.4642 0.615 33.62 22.88 54.91

DST Multi - - 0.4345 0.580 39.50 20.03 55.83
Attention O - 0.4215 0.525 40.45 17.31 53.06
(F ′ = 16) O O 0.4329 0.555 41.48 16.92 50.26

Single - - 0.4423 0.570 37.16 20.30 54.20
O - 0.4209 0.505 39.87 17.95 52.24
O O 0.4078 0.510 41.96 16.54 55.10

Table 4: SELD performances of DST attention with various F ′ on
dev-test data (augmentation and external data were not used)

ACCDOA F ′ SELD
Score ER F-score LE LR

Multi 8 0.4422 0.595 37.42 19.48 56.01
16 0.4345 0.580 39.50 20.03 55.83
32 0.4517 0.570 35.86 18.24 50.60
64 0.4523 0.600 37.55 17.89 51.48

Single 8 0.4474 0.590 37.20 19.67 53.78
16 0.4423 0.570 37.16 20.30 54.20
32 0.4758 0.600 33.41 18.55 46.60
64 0.4804 0.590 34.08 19.79 43.75

Table 5: SELD performance of submitted models on dev-test data

Submission SELD
Score ER F-score LE LR

1 0.4023 0.495 42.68 16.70 55.19
2 0.4078 0.510 41.96 16.54 55.10
3 0.4149 0.515 41.24 17.68 54.12

model across all SELD metrics when combined with suitable fre-
quency pooling. Additionally, the inclusion of augmentation meth-
ods such as frameshift, time masking, channel swap, and moderate
mix-up effectively tackles the problem of overfitting to the training
data. Furthermore, the integration of external data synthesized from
the balanced AudioSet dataset proves to be beneficial in accounting
for various recording environments.
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