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ABSTRACT 

In this technical report, we describe the CISS-NTU team’s sub-

mission for Task 1 Low-Complexity Acoustic Scene Classifica-

tion of the detection and classification of acoustic scenes and 

events (DCASE) 2023 challenge [1]. We have explored and 
adapted the hyperparameters of the baseline (BL) system pro-

vided in this challenge. The TAU Urban Acoustic Scene 2022 

Mobile, development dataset [2] has been used to train and 
validate our models. Each audio sample is transformed into 160 

log-mel energies. Three models are submitted with two trained 

using the development dataset and one trained using the devel-
opment dataset combined with augmented samples. The best 

performing model achieves an accuracy of 52.1% and a log loss 

of 1.372, and only requires 6.46 M of multiply-and-accumulate 

(MAC) operations and has a memory usage of 54.30 KB.  
 

Index Terms— Acoustic scene analysis, CNN, data 

augmentation, mel spectrogram. 

1. INTRODUCTION 

In task 1 of DCASE challenge 2023, acoustic scene classification 
(ASC) is employed to recognize 10 acoustic scenes from 12 cities 

based on 1 sec audio samples. To align ASC with the perfor-

mance of typical edge devices, task 1 [1] of the DCASE chal-
lenge 2023 has imposed the following system complexity re-

quirements: 

• Maximum memory allowance: 128KB 

• Maximum number of MACS per inference: 30 MMAC 

Mel-spectrogram from the audio signals is used as the input 

features for our models. The models’ parameters and architecture 

were tuned to achieve the best performance within the above-

mentioned complexity limits.  

Convolution neural networks (CNNs) have dominated the en-
tries of the task 1 challenge. Many CNN models have produced 

promising results on ASC tasks and achieved good accuracies on 

the TAU urban acoustic scene 2022 mobile dataset [2]. In this 
work, we adapt and optimize the CNN architecture of the base-

line (BL) system, and the input features obtained from the audio 

samples in the development dataset. These modifications focus 

on improving classification accuracy while reducing system 
complexity. Augmentation techniques are experimented on and 

will be introduced to enhance the generalizability of the model to 

unseen devices and the variability of the audio samples. To fur-
ther reduce the model size and computational cost, post-training 

quantization is applied to convert the weights and parameters of 

the trained model.   

This report is organized as follows. In section 2, the input 
features, augmentation techniques used, and proposed model are 

discussed. Section 3 presents the results of our submissions based 

on the development and augmented datasets. This report is con-
cluded in Section 4. 

2. PROPOSED SYSTEM 

2.1. Preprocessing 

The TAU urban acoustic scene 2022 mobile dataset contains 

recordings of 10 acoustic scenes in 12 European cities. These 

recordings are captured using four devices and synthetic data for 

11 devices was generated using the recordings. Each 1 sec audio 
sample is captured with a sampling frequency of 44.1 kHz sam-

pling rate and encoded at 24-bit resolution.  

For the input feature, a 160 bin mel-spectrogram is calculat-
ed using the short time Fourier transform (STFT) using a win-

dow length of 0.16 sec with 50% overlapping. This setting re-

sults in 13 frames and an input feature shape of [160 × 13].  
44.1 kHz, 32 kHz, 16 kHz, and 8 kHz were experimented 

with to determine the optimal sampling frequencies. The input 

features and the downsampling of the audio samples is per-

formed using Librosa [3]. A summary of the log loss and aver-
age accuracies (based on a modified BL model) across the 10 

scenes is provided in Table I. We observed a very slight im-

provement when the sampling rate of the audio samples is at 
44.1 kHz, as compared to the other sampling frequencies. A 

comparison of the averaged mel spectrograms of the 10 acoustic 

scenes is shown in Fig. 1. The acoustic scenes of the airport, 

park, shopping mall, street pedestrian, and tram are relatively 
narrower in terms of bandwidth, and we can see significant 

frequency components at 16kHz and above for the remaining 

acoustic scenes. Based on these observations, the sampling rate 
of the audio samples is selected to be 44.1 kHz. 

2.2. Data Augmentation 

To prevent overfitting and improve system robustness, several 
augmentation techniques using additive Gaussian noise, pitch-

shift, time-shift, and SpecAugment are experimented with during 
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Fig. 1. Averaged mel-spectrograms of the 10 acoustic scenes. Acoustic scene of bus, metro, metro station, public square, and street traffic are found to 

span across wider bandwidth. 

 

Table I Average Log Loss and Accuracies With Different Sampling Frequencies 

Sampling Frequency 

(kHz) 

Log Loss Accuracy (%) 

8 1.429 48.1 

16 1.42 47.8 

32 1.426 47.8 

44.1 1.415 49.1 

 

Table II Hyperparameters of models  

Model 

CNN Layer #1 CNN Layer #2 CNN Layer #3 

D1_1 
MAC 

(M) 

MEM 

(KB) 
Aug 

Filters 
K1_1, 

K1_2 

M1_1, 

M1_2 
Filters 

K2_1, 

K2_2 

M2_1, 

M2_2 
Filters 

K3_1, 

K3_2 

M3_1, 

M3_2 

BL 16 7 × 7 N.A. 16 7 × 7 5, 5 32 7 × 7 4, 10 100 29.23 46.51 No 

SM_1 16 3 × 3 2, 2 16 3 × 3 4, 2 32 7 × 7 6, 1 32 2.96 37.50 No 

SM_2 16 3 × 3 2, 2 24 5 × 5 4, 3 32 7 × 7 6, 1 32 6.46 54.30 No 

SM_3 16 3 × 3 2, 2 24 5 × 5 4, 3 32 7 × 7 6, 1 32 6.46 54.30 Yes 

 

Table III Submited Models 

Model Overall Log Loss Overall Accuracy 

(%) 

Training (kWh) Inference (kWh) 

BL 1.542 41.2 0.1955 0.4594 

SM_1 1.397 50.3 0.2692 0.0518 

SM_2 1.372 52.1 0.4272 0.1061 

SM_3 1.381 50.0 0.5516 0.1057 

 

the training of the submitted models. The description of the four 

augmentations are as follows. 

2.2.1. Gaussian Noise  

Gaussian noise with an amplitude of 0.01 is added to the audio 

samples in the time domain. This augmentation technique helps 
to simulate the natural variation and noise that is found in real-

world recording. By adding Gaussian noise to the audio samples, 

the model learns to be more robust against small variations and 
perturbations in the audio samples [4].  

2.2.2. Pitch-Shift 

Pitch-shifting involves changing the pitch of a waveform while 

maintaining the tempo of the audio sample. A shift of four semi-
tones was found to be beneficial to environmental sound classi-

fication [5] and is applied in our audio samples.  

2.2.3. Time-Shift 

Audio samples are shifted forward and backward with rollover 

to generate more temporal variations of the audio samples. This 

augmentation exposes the model to a broader range of temporal 
patterns of the audio samples.  
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Fig. 2. Network architecture of submitted model (SM) adapted from BL 

system. 

2.2.4. SpecAugment 

SpecAugment [6] masks a set of frequencies in a spectrogram 
and generates variation in both the frequency and temporal 

structure of the audio samples. This technique is a popular aug-

mentation technique in the 2022 challenge. For comparison, the 
power consumption of all models will be discussed in the next 

section. 

2.2.5. Choosing Augmentation 

Based on our experimental results, our model achieve the best 
performance with time-shift augmentation. To reduce power 

consumption, only one augmentation is applied in the training of 

our model. 

2.3. Network Architecture 

The BL model is used as the starting point of our development. 

Taking into consideration of the parameters and MAC limits of 
the challenge, several modifications were introduced to reduce 

the computational cost while improving the performance of the 

model.  

The network architecture of the submitted models is illus-
trated in Fig. 2, and the hyperparameters used in these models 

are summarized in Table II. The dropout of dense layer #1 is 

increased from 0.3 to 0.5. Three variations of the models are 
submitted, with the SM_1 and SM_3 having the lowest and 

highest computational cost of 2.96 MMAC and 6.46 MMAC, 
respectively. The training of the two submitted models without 

augmentation incurred the lowest power consumption. 

2.4. Post-Training Quantization 

Post-training integer quantization is implemented using Tensor-
flow [7]. While the input and output of the models are kept at 

float32, the weights of the models are converted to int8. After 

the quantization, our submitted models have MMACs lower than 
6.5M and the memory usage is kept below 55KB. 

3. RESULTS AND SUBMISSION 

The submitted models were trained for 450 epochs with a batch 
size of 64 using SGD optimizer and callbacks providing learning 

rate schedule and early stopping. Training of the models is ter-

minated before the 450 epochs. The development dataset is split 

into training and validation sets at 70% and 30%, respectively.  
The results of the submitted models are summarized in Table 

II. Model SM_3 is trained using the development dataset com-

bined with augmented audio samples, and models SM_1 and 
SM_2 are trained using the development dataset only. Both 

SM_1 and SM_2 have accuracies over 50%, even though the 

system complexity is significantly lower than the BL system. In 

addition, SM_1 has a smaller memory footprint as compared to 
the BL system. 

4. CONCLUSIONS 

In this technical report, we described the CISS-NTU submis-
sions to task 1 of the DCASE 2023 challenge. The proposed 

model is extended from the BL system after a series of optimiza-

tion of the hyperparameters, focusing on the reduction of the 
system complexity while improving the accuracy of the model. 

Mel spectrograms are used as the input to the model, and time-

shift augmentation is found to work best with the submitted 

models. Post-training quantization was applied to the trained 
model and the weights of the model were converted to int8. Our 

model achieves an accuracy of 52.1% with a memory usage of 

54.30 KB, while only requiring a computational cost of 6.46 
MMAC. 
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