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ABSTRACT

This technical report details our approach to Task 1 of the
2023 Detection and Classification of Acoustic Scenes and Event
(DCASE2023) [1], which focuses on the classification of recorded
audios for acoustic scene recognition. The task calls for a quan-
tized model of no more than 128KB in memory allowance for model
parameters and a maximum of 30 millions of multiply-accumulate
operations (MMACS) per inference. Our solution exploits log-mel
sprectrogram features and leverages multiple data augmentations.
Our proposed methodology utilizes an audio spectrogram trans-
former (AST) [2] as the teacher model and multiple Convolutional
Neural Network (CNN) models as students in a hierarchical knowl-
edge distillation (KD) framework. This approach aids in bridg-
ing the substantial parameter disparity between the teacher model,
which has over 86 million parameters, and our compact CNN-based
model limited to just 119,526 parameters. Upon network training
completion, the variable type of the weight data is converted into
type INT8 to meet the size constraints. Our INT8 model achieves
a log-loss of 1.59 and an accuracy of 46.01% on the TAU Urban
Acoustic Scenes 2022 Mobile Development [3] dataset’s standard
test set, signifying the efficacy of our framework. Our proposed
method demonstrates the potential of distillation strategies in opti-
mizing smaller models without compromising their learning ability
in a hierarchical approach.

Index Terms— audio spectrogram transformer, log-mel spec-
trogram, acoustic signal classification, knowledge distillation

1. INTRODUCTION

Acoustic scene classification is a domain dedicated to identifying
the soundscapes of recorded audios, an area that has seen signifi-
cant advancements in applications. Numerous classification meth-
ods have emerged in recent years such as CNN-based models [4]
and transformer models [2]. The first task of DCASE 2023 pro-
poses a captivating challenge: participants are tasked to develop a
method capable of identifying various auditory scenes, such as air-
ports, parks, streets, and more, within a one-second audio clip. This
must be achieved while complying the limitations of less than 30
MMACS and 128KB in maximum memory allowance for model
parameters. This presents an interesting challenge that combines
machine learning, audio processing, and resource optimization for
edge devices.
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To thoroughly exploit the time-frequency characteristics of au-
dio data, we developed an approach that incorporated diverse data
processing techniques in data augmentation and feature extraction.
We design and train a compact CNN-based model by applying nu-
merous data augmentation techniques in the time-frequency domain
to enhance training data variety and model adaptability. To further
improve the model’s performance, we apply KD concept that had
previously exploited by Schmid et al.[5], and Gong et al.[6]

In summary, the main contributions of our proposed method
are:

1. We designed a compact CNN model tailored to satisfy the
specified constraints of the challenge.

2. We applied the KD technique to enhance the performance
of our compact model, thus optimizing its learning from the teacher
model.

3. We developed two supplementary CNN-based models that
act as bridges between the teacher model and the compact student
model to facilitate the knowledge transfer.

2. PROPOSED METHODOLOGY

2.1. Hierarchical Knowledge Distillation Framework

The proposed approach is a hierarchical knowledge distillation (H-
KD) framework with a pre-trained AST model serves as the teacher,
guiding a cascade of CNN-based student models. Initially, the
teacher model, having been pre-trained, imparts its knowledge to
the successive student models. The first student model, Student 1,
is a Resnet-18 based model consisting of over 11M parameters. The
second student model, Student 2, is a CNN-based model with over
746K parameters. Lastly, Student 3, the final lightweight model,
designed similarly to the architecture of Student 2 but is more com-
pact, consisting of merely 119K parameters.

Our proposed CNN-Transformer knowledge distillation frame-
work utilizes the strengths of both these architectures, facilitating
the absorption of knowledge by our lightweight CNN-based model
(with 119,526 parameters) from the teacher model (with over 86
million parameters), despite their huge difference in size.

During the training process, the teacher model remains in eval-
uation mode - effectively frozen and unaltered. Student models 1
and 2 are initially pre-trained with the challenge development data
and are subsequently fine-tuned throughout the training of Student
3. As described in Figure 1, the first distillation learning layer incor-
porates a pre-trained AST as a teacher model. The loss for Student
1 is computed based on both its label loss and the distillation loss
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Figure 1: Proposed methodology on effective training of Hierarchical Knowledge Distillation

Class Baseline Log-Loss Baseline Accuracy (%) Proposed Model Log-Loss Proposed Model Accuracy (%)
Overall 1.575 42.90 1.591 46.01
Airport 1.534 39.4 1.430 50.41
Bus 1.758 29.3 1.839 41.48
Metro 1.382 47.9 1.958 40.17
Metro Station 1.672 36.0 1.728 40.51
Park 1.448 58.9 0.898 74.55
Public Square 2.265 20.8 2.277 22.29
Shopping Mall 1.385 51.4 1.736 40.71
Street Pedestrian 1.822 30.1 1.896 32.42
Street Traffic 1.025 70.6 0.981 72.69
Tram 1.462 44.6 1.579 44.80

Table 1: Class-wise Log-loss and Accuracy on the DCASE 2022 Development Test Data for Baseline and the Proposed Model.

- a measure of the difference between the teacher’s output and Stu-
dent 1’s output. A similar process is used in the second distillation
learning layer, which involves Student 1 and Student 2. Student 2’s
loss is also computed based on its label loss and the distillation loss
between Student 1’s output and Student 2’s output. Finally, in the
third distillation learning layer, Student 3’s loss is computed, con-
sidering both its label loss and the distillation loss between Student
2’s output and Student 3’s output.

The loss function that is used throughout the whole framework
as follows:

L = α · student loss + (1− α) · distillation loss (1)

The balancing coefficient is denoted by α, while the student
label loss and Kullback–Leibler divergence are represented by stu-
dent loss and distillation loss, respectively. The activation function
is softmax and the label loss is calculated using cross entropy. As
described, we use the Kullback–Leibler divergence as distillation
loss. In the context of cross-model KD, there may be a discrep-
ancy in the softness of the logit distributions between the teacher
and student models. To mitigate this, we selectively apply a tem-
perature factor (T) solely to the logits of the teacher model, thereby

enabling explicit control over this difference [6].
Based on experimental results, our final submission model has

the following configurations: α = 0.45 and T = 1.5.

2.2. Data Augmentation

To enhance the model’s performance and generalization ability, we
implement data augmentation in the time and frequency domains.
Time-domain data augmentation techniques include mix up [7, 8]
and adding white noise to signal data. Frequency-domain data aug-
mentation is achieved using SpecAugment [9]. These methods has
been exploited by various experiments in the domain.

2.3. Backbone Architecture

We design a CNN-based model as the backbone of our solution,
consisting of a mix of standard convolution (Conv2d) layers and
depthwise separable convolution layers.

The architecture begins with a standard convolution layer that
takes a single-channel input and outputs 16 channels. This is fol-
lowed by alternating depthwise separable convolution layers, and
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another standard convolution layer. The depthwise separable con-
volution layers increase the receptive field while maintaining com-
putational efficiency. A series of depthwise separable convolution
layers follows, each of which is designed to further process the fea-
tures and increase the model’s ability to capture complex patterns
in the data.

Each convolutional layer is followed by a batch normalization
operation to stabilize the learning process and reduce internal co-
variate shift. The output from these layers goes through a ReLU
activation function to introduce non-linearity into the model.

To handle overfitting, dropout and max pooling layers are used.
The max pooling layers are strategically placed to progressively re-
duce the spatial dimensions of the data, allowing the model to focus
on the most salient features.

The output from the final convolution layer is flattened and
passed through two fully connected (Linear) layers, which serve to
aggregate the learned features and map the output vector to the final
10-classification classes.

Quantization stub layers (QuantStub and DeQuantStub) are in-
cluded in the model for quantization-aware training. These layers
do not change the model’s behavior during training but allow for
the conversion of the model’s parameters to INT8 during the post-
training quantization process.

The CNN-based model contains mix of standard and depthwise
separable convolution layers, batch normalization, and dropout, has
been meticulously designed to handle the challenges of acoustic
scene classification under the constraints of model size and com-
putational efficiency.

2.4. Training

We trained the model using back-propagation and RAdam opti-
mizer with a batch size of 64 and cross-entropy loss function. A
cosine learning rate scheduler was used to reduce the learning rate
during training when validation accuracy ceased to increase.

2.5. Quantization and Inference

Post-training quantization is applied to convert the weights in the
model to INT8, reducing the model size but slightly decreasing the
accuracy. Results in this report were obtained using the quantized
model.

3. EXPERIMENTAL RESULTS

For testing log-loss and accuracy observations, Table 2 shows the
performance improvement achieved by incorporating KD into the
training of our proposed CNN model. For consistency and fairness,
all experiments were conducted over the same number of training
epochs.

The baseline model achieved a log-loss of 1.575 and an accu-
racy of 42.90%. Our proposed CNN model, before KD was im-
plemented, demonstrated a slightly higher log-loss of 2.05 and a
slightly lower accuracy of 39.89%. The initial application of KD
was done by calculating the distilation loss directly between the
AST - teacher model and the compact CNN model. The experiment
improved the CNN model, as reflected by the reduced log-loss of
1.89 and increased accuracy of 42.61%.

Our final and most effective model, the proposed CNN model
trained within a comprehensive KD framework, exhibited a further
reduced log-loss of 1.59 and much higher accuracy of 46.01%. This

marks a significant improvement over the baseline model, validating
the efficacy of our proposed model and the applied KD technique.
Additionally, when being trained with the H-KD framework, the
proposed CNN model converges faster in term of effective training.

For a more detailed analysis, Table 1 presents class-wise log-
loss and accuracy for both the Baseline model and our proposed
model on the TAU Urban Acoustic Scenes 2022 Mobile Develop-
ment test data. This allows us to further understand the individ-
ual class performance and the overall impact of our proposed CNN
model with H-KD framework.

Model Log-Loss Accuracy (%)
Baseline 1.575 42.90
Proposed CNN 2.05 39.89
Proposed CNN + KD 1.89 42.61
Proposed CNN + KD framework 1.59 46.01

Table 2: Log-loss and Accuracy on the TAU Urban Acoustic Scenes
2022 Mobile Development - Test Set.

4. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hierarchical knowledge distillation
framework that utilized audio spectrogram transformer and CNN-
based models in a multi-stage learning approach. The method out-
performed the Baseline system accuracy and demonstrated that it
could bring up the performance of a light-weighted model, in addi-
tion to helping the student model converge faster.

We aim to improve the model’s capabilities by exploring new
method of incorporating self-supervised learning [10] for address-
ing data sparsity in the teacher model and further improve the stu-
dent model robustness.
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