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ABSTRACT

This paper is a system description of the XiaoRice team submis-
sion to the DCASE 2023 Task 4 challenge. In light of the increas-
ing availability of pretrained audio embedding models, our research
addresses the need for efficient utilization of these resources, tak-
ing into account their environmental impact. Our method named
plain efficient pretrained (audio) embeddings (PEPE) integrates a
linear classifier or a bidirectional gated recurrent network (BiGRU)
with those embeddings while prioritizing energy efficiency, training
speed and minimizing carbon emissions. By employing a stream-
lined approach, we demonstrate that a linear classifier with 52K pa-
rameters surpasses the challenge baseline for PSDS-2 scores, high-
lighting the potential of eco-friendly solutions in achieving supe-
rior performance. We achieve a polyphonic sound detection score
(PSDS)-1 score of 53.44 via a 6-way ensemble and a PSDS-2 score
of 88.60 with a simple linear classifier using PEPE. Through our
work, we aim to emphasize the adoption of environmentally con-
scious practices in the field.

Index Terms— Semi-supervised learning, Weakly supervised
learning, Transformers, Linear classification.

1. INTRODUCTION

This paper presents a system developed for the DCASE 2023 Task 4
challenge, which focuses on modeling audio signals for sound event
detection (SED). In SED, the primary objective is to classify or tag
an event, along with its corresponding onset and offset timings.

Currently, SED can be used for a variety of applications, such as
an aid for the hearing impaired, smart cities and homes [1], audio-
to-text retrieval [2], voice activity detection [3, 4] and audio cap-
tioning [5, 6]. Most current approaches within SED utilize neural
networks, in particular convolutional neural networks [7, 8] (CNN),
convolutional recurrent neural networks [9, 10, 11] (CRNN) and
transformers [12, 13].

The paper is structured as follows. Section 2 describes our core
system idea. Further, Section 3 introduces the experimental setup
and Section 4 displays our achieved results. Finally, Section 5 con-
cludes the work.

2. SYSTEM

Since the use of external data is allowed in this challenge, our ob-
jective is to harness large-scale pretraining to extract high-level em-
beddings for sound event detection (SED). In contrast to previous
approaches that involve training large extensive models specifically
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designed for SED [13, 14], our work relies exclusively on pretrained
embeddings as the primary input. The process of extracting embed-
dings involves mapping the raw audio data into a latent space repre-
sentation. This latent space preserves important characteristics and
discriminative features of the audio, enabling effective classification
for downstream tasks such as SED. The use of pretraining allows us
to leverage a large amount of data, enabling our model’s to learn ro-
bust representations that generalize well to unseen audio samples.
This system offers the advantages of overall low complexity (when
disregarding pretraining costs), fast training speed, and a reduced
carbon footprint. Our proposed embeddings are extracted from a
variety of Vision Transformer (ViT) [15] models, which have been
tailored and optimized for audio-based tasks.

We overall utilize two neural network-based classifiers for the
embeddings: One is capable of predicting on- and offsets by us-
ing a bidirectional gated recurrent unit (BiGRU) network, while the
other uses a simple linear classifier. Each model is optimized to-
wards one of the challenge metrics being polyphonic sound detec-
tion score (PSDS) [16] 1 (on- and offset sensitive) and 2 (tagging).
The model architecture optimized for PSDS-1 can be seen in Ta-

Layer Output size

InputEmbed T ×D
Interpolation Ttar ×D

Linear Ttar × 128
BiGRU Ttar × 256

Attentionpool Ttar × 10

Table 1: The proposed model for PSDS-1 optimization. Ttar is the
(interpolated) target length of the output.

ble 1. It operates on an input embedding of size T × D, where
T denotes the number of tokens and D represents the embedding
dimension. Our approach begins by interpolating T to a target out-
put resolution of Ttar and subsequently reducing the dimensionality
to 128. The resulting 128-dimensional embedding is then fed into
a BiGRU, responsible for predicting time stamps for each sound
event. Lastly, we leverage an attention-based pooling method to
compute the average output scores for individual sound events, en-
abling the utilization of weakly labelled data.

Additionally, the model optimized for coarse tagging perfor-
mance (PSDS-2) is showcased in Table 2. In this architecture, a ba-
sic linear transformation of the input is computed by taking the av-
erage across the time dimension T . Subsequently, this transformed
representation is fed into a linear classifier, responsible for predict-
ing the presence of a sound event.
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Layer Output size

InputEmbed T ×D
Linear T × 256
Mean 256

Linear 10

Table 2: The proposed model for PSDS-2 optimization.

2.1. Embeddings

In the following, we describe the embeddings we used for the
ensembles of our submissions. If not otherwise stated, the pre-
trained models utilize 64-dimensional log-Mel-spectrograms ex-
tracted with a window size of 32 ms at a rate of 10 ms at 16kHz.
All transformer models use a patch-size of 16×16, with no overlap
between patches, which results in T = 248 (4 tokens in frequency
and 62 in time) for each model. We further also include the baseline
BEATs embedding [17], which has T = 496 tokens, due to the use
of 128-dimensional Mel-spectrograms.

Embeddingname Size Backbone mAP

Tiny 248× 192 ViT-Tiny 44.56
Small 248× 384 ViT-Small 46.25
Base 248× 768 ViT-Base 47.54
BEATs 496× 768 ViT-Base ⋆45.40
Large 248× 1024 Vit-Large 48.32

Table 3: A summary of the embeddings utilized in this study. AUn-
less otherwise specified, all embeddings have been pretrained on
Audioset. The corresponding mAP scores on Audioset are also pro-
vided for each embedding. The size is indicated as T ×D. Results
marked with ⋆ indicate finetuning on a semi-supervised level, mak-
ing them not directly comparable.

These embedding extractors were all pre-trained on Audioset,
whereas we provide the mean average precision (mAP) for each
model in Table 3. It is worth mentioning that our proposed em-
beddings were not obtained through teacher-student training, dis-
tinguishing them from BEATs [17].

2.2. Stacking Embeddings

One of the simplest ways to improve performance is to concate-
nate or stack embeddings together over the embedding dimension
D. However, when dealing with embeddings of different token
lengths T , an interpolation strategy is employed to address the mis-
match between different token lengths. Since the number of tokens
T differs between the embeddings, we opt for a simple interpola-
tion strategy. To accomplish this, we first pool the frequency-token
dimension for each embedding, resulting in 62 tokens (160 ms per
token) for a given 10-second input. Then, we stack all embeddings
across the embedding dimension, which yields a comprehensive
high-level embedding. In this work, we utilize three stacked em-
beddings, which are introduced in Table 4.

2.3. Training framework

We follow our previous work [14], where we utilize Mean Teacher
(MT) [18] for all PSDS-1 optimized models and unsupervised data

Embeddingname Size Source-Embeddings

BeST 62× 1344 BEATs, Small, Tiny
LBST 62× 2368 Large, Base, Small, Tiny
BeLBST 62× 3136 BEATs, Large, Base, Small, Tiny

Table 4: The stacked embeddings used in this work.

augmentation (UDA) [19] for PSDS-2 optimized models. Since our
work focuses on utilizing pretrained embeddings to their fullest, we
do not submit a non pretrained model.

1. SINGLE is a monolithic model approach, where a single
model is utilized for the task.

2. SED is specifically designed and optimized to achieve high
performance on the PSDS-1 metric.

3. L-TAG (Linear Tag) is specifically designed and optimized
to achieve high performance on the PSDS-2 metric with as
few resources as possible.

3. EXPERIMENTAL SETUP

3.1. Dataset

The DCASE 2023 Task 4 dataset is split into a development (used
for training) and an evaluation section. The development set is fur-
ther split into training and validation sections. The training section
contains three datasets Dweak,Dsyn,Dun:

Dweak = {(x1, y2), (x2, y2), . . . , (xN , yN )},
Dsyn = {(x1, y2), (x2, y2), . . . , (xM , yM )},
Dun = {x1, . . . , xP }.

The Dweak and Dsyn datasets are labeled and Dun only consists of
audio data in a matching domain with Dweak.

3.2. Training hyperparameters

Further, we denote use R to denote each model’s output-label frame
resolution. During training, if segments are shorter than 10 seconds,
we zero-pad the input to the longest sample within a batch. During
inference, we use a batch size of 1, such that padding has no effect.

All experiments start with a learning rate of 0.001 and are run
for at most 200 epochs, with a linear warmup duration of 5000 it-
erations ≈ 50 epochs the Adam optimizer. Batch sizes are set to
be 12 for weak and synthetic data and 24 for unlabeled data. The
available weak training data is split into a 90% training and a 10%
cross-validation portion. Cross-validation is done on the 10% held-
out weak subset with the additional synthetic validation data. The
training objective is the sum of the weak F1 and the intersection-F1
score, whereas training is stopped if the model did not improve for
15 epochs. Pytorch [20] was used as the neural network backbone.

For training, we use the standard binary cross-entropy (BCE)
criterion. The following losses are employed during training:
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Lsup = BCE(ŷ, y), {y, ŷ} ∈ Dweak, (1)
Lsyn = BCE(ŷt, yt), {yt, ŷt} ∈ Dsyn, (2)

LUDA = LCstcy(ŷ
†, ŷ) + LCstcy(ŷ

†
t , ŷt), x ∈ Dun. (3)

LMT = LCstcy(ŷ
µ, ŷ) + LCstcy(ŷ

µ
t , ŷt), x ∈ Dun. (4)

Lunsup(x) =

{
LUDA(x) if UDA
LMT(x) if MT

, (5)

where ŷ† is the model prediction of an augmented sample
x† = Aug(x) and ŷµ is the mean-teacher predicted label for a sam-
ple. For mean-teachers we follow the public DCASE2023 Task 4
baseline approach, while UDA is applied according to [10]. If not
further stated we use BCE as the consistency loss LCstcy. Each net-
work is optimized using the sums of all introduced losses seen in
Equation (6).

Ltot = Lsup + Lsyn + Lunsup (6)
Note that we do not use data augmentation, since we believe

that a simple linear layer requires little regularization. For all exper-
iments in SED, we set Ttar = 156, to be identical to the baseline
frame resolution.

3.3. Post-processing

If not further stated, we use the default median-filtering approach
with a length of approximately 320ms.

3.4. SINGLE/SED

The models used for SED are introduced in Table 5. We pro-
vide information regarding the amount of trainable parameters (#
Params), number of multiply–accumulate operations (MACs) and
each model’s respective target resolution R. Further, our SIN-
GLE model is chosen to be the best-performing model within the
proposed models S1-S6. For all models, we train a 2-layer, 128-
dimensional BiGRU (see Table 1), which is attached to the input
embedding.

ID Embedding-Name #Params MACs (M) R (ms)

- Baseline 2.6M 930 64
S1 Tiny 524K 81.25 64
S2 Small 549K 86.04 64
S3 Base 598K 93.75 64
S4 Large 630K 98.95 64
S5 BeST 671K 105.20 64
S6 BeLBST 901K 141.04 64
SED Ensemble 3.8M 606 64

Table 5: Introduction to the models used for SED. The back-bone
of each model follows Table 1.

3.5. TAG

For our PSDS-2 optimized submission, we focus on coarse-scale
predictions of 2/5/10s respectively. Our L-TAG ensemble compo-
nents are described in Table 6. Note that the majority of mod-
els have a label resolution of 10s, which can have a negative im-
pact on performance since some very short bursts of sound events

might not be detected. Thus we additionally use pseudo strong la-
bels (PSL) [21], to predict labels on a scale of 2s/5s respectively.
Note that the BEATs embedding uses 1-dimensional average pool-
ing over the token dimension to align with the target resolution Ttar ,
while our proposed embeddings use standard nearest-neighbor in-
terpolation, leading to a smaller amount of MACs.

ID EmbeddingName #Params MACs (M) R (s)

- Baseline 2.6M 930 64
T1 Tiny 52K 12.50 10
T2 Small 101K 22.91 10
T2/PSL2s Small 101K 22.91 2
T2/PSL5s Small 101K 22.91 5
T3 Base 200K 47.91 10
T4 Large 264K 64.58 10
T5 BEATs 200K 97.91 10
T6 LBST 610K 37.50 10
T7 BeST 350K 20.83 10
L-TAG - 2.0M 350 -

Table 6: Introduction to the models used for TAG. The back-end for
each model can be seen in Table 2.

3.6. Ensemble

During model ensemble, the outputs from different models might
output at different resolutions. In order to average these predic-
tions, we nearest-neighbour upsample all model predictions to the
highest resolution within an ensemble. Post-processing is applied
after score averaging.

4. RESULTS

We report our results in terms of the two main challenge metrics de-
noted as PSDS-1 and PSDS-2 [22], where this year’s challenge cal-
culates threshold-independent PSDS [16]. Note that all results rep-
resent the performance on the held-out official development dataset.

4.1. System-1 (SINGLE)

The results regarding our system-1 submission can be seen in Ta-
ble 7. Here we only use the previously introduced S5 model Ta-
ble 5.

ID PSDS-1 PSDS-2 Kwh

Baseline 50.00 72.60 1.82
SINGLE (S5) 52.75 78.96 0.19

Table 7: Results for our SINGLE system (submission 1), where no
external data is used. Best results are in bold.

4.2. System-2 (SED)

Results regarding our proposed SED system can be seen in Table 8.
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ID PSDS-1 PSDS-2 Kwh

Baseline 50.00 76.20 1.82
S1 44.99 70.04 0.18
S2 48.77 76.01 0.15
S3 46.14 73.77 0.24
S4 46.38 71.37 0.16
S5 52.75 78.96 0.19
S6 51.31 73.18 0.11
SED 53.44 81.10 1.03

Table 8: Results for our SED model (submission 2), emphasizing
accurate on- and offsets. Best results are displayed in bold.

4.3. System-3 (L-TAG)

Our results for the L-TAG model can be seen in Table 9. If during
testing clips longer than 10s are provided we split these samples
into 10s chunks and individually estimate scores for each chunk.

ID PSDS-1 PSDS-2 Kwh

Baseline 50.00 76.20 1.82
T1 9.52 86.82 0.10
T2 8.89 87.55 0.11
T2/PSL2s 10.39 83.22 0.06
T2/PSL5s 11.67 87.00 0.11
T3 8.55 87.20 0.12
T4 9.04 86.92 0.16
T5 9.30 86.76 0.08
T6 8.90 87.65 0.16
T7 9.40 88.13 0.10
L-TAG 10.24 88.60 1.00

Table 9: Results for our L-TAG model (submission 3), focusing on
coarse performance. The best models for each respective metric are
in bold.

5. CONCLUSION

This paper presents the XiaoRice submission, named plain efficient
pretrained embeddings (PEPE), for the DCASE2023 Task4 chal-
lenge. Our approach focuses on leveraging simple classifiers with
pretrained audio transformer embeddings. PEPE represents one
of the simplest yet effective approaches to achieve strong perfor-
mance on the DCASE Task4 datasets. The SINGLE system obtains
a PSDS-1 score of 52.75 and PSDS-2 score of 78.96, respectively
without utilizing an ensemble. Second, our main SED submission
to the challenge achieves a PSDS-1 score of 53.28, surpassing the
baseline approach. Finally, our L-TAG ensemble method, utilizing
a straightforward linear classification layer, attains an impressive
PSDS-2 score of 88.60.
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