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ABSTRACT

This technical report describes our approach to Task 7 (Foley Sound
Synthesis), Track B (using no external resources other than the ones
provided) of the DCASE2023 Challenge. This work was carried
out by a student group, as part of an elective course in the Artificial
Intelligence curriculum at Johannes Kepler University Linz.

We use an ensemble of U-Net based diffusion models for wave-
form generation in seven predefined sound categories. We apply
gain reduction to normalize, and time shifting to augment the pro-
vided training data and test different noise schedulers and U-Net ar-
chitectures. Applying different training strategies, we achieve com-
petitive results for the majority of the sound classes while being
more parameter efficient and allowing end-to-end generation on au-
dio waveforms. Evaluated on the task’s evaluation metric, i.e., the
mean FAD score over all classes, we achieve a final score of 12.42
as compared to the score of the challenge baseline model of 9.68.

Index Terms— Foley sound synthesis, diffusion, U-Net

1. INTRODUCTION

Foley sound effects are reproductions of everyday sound effects
used in film and other forms of media. By providing realistic
sounds, synchronized with the visual cues on screen, Foley sounds
aim to enhance the perceived acoustic quality. The production of
Foley sounds traditionally involves a human Foley artist, who man-
ually records and manipulates sounds to create the desired acoustic
properties. This process can be a time-consuming and expensive
task in post-production, which leads to increased interest in using
machine learning techniques to produce Foley sound. To reflect this
increasing interest, the task of Foley sound generation has been in-
troduced as a challenge in the DCASE23 [1].

For a considerable time, autoregressive models have been the
dominant generative model architecture for audio generation [2, 3,
4]. Despite producing audio of adequate quality and long-term co-
herence, the generation process is often slow due to the sequen-
tial nature of sample generation. Non-autoregressive generative
models have primarily focused on architectures involving Gener-
ative Adversarial Networks (GANs) [5, 6, 7], which are prone to
unstable training. More recently, in the field of computer vision,

diffusion models (DMs) have proven to be capable of generating
high quality images overshadowing the performance of adversar-
ial networks [8, 9]. Given the success in the image domain, some
researchers have likewise applied DMs for generative tasks in the
audio domain, focusing on either text-prompted audio [10, 11],
speech [12] or music generation [13, 14].

Inspired by these results, we have chosen a U-Net based diffu-
sion approach to tackle the Foley sound synthesis task in the B track
variant (i.e., without the use of external models and datasets except
the data provided). Moreover, we chose to apply our architecture on
the waveform (as opposed to the spectrogram) representation given
the recent results obtained by Huang et al. [14].

The remainder of this technical report is structured as follows:
First, in Section 2 we shortly illustrate the task including a de-
scription of the baseline model, provided dataset and evaluation
metric used. In Section 3 we explain our general approach using
a waveform-based diffusion model with a U-Net-like architecture.
Next, in Section 4 we report our experiments, including applied data
augmentation and model configurations, and our final results. We
conclude this report in Section 5.

2. TASK DESCRIPTION

2.1. Problem definition and evaluation metric

The Foley sound synthesis task is conceptualized as a category-to-
sound generative task. For seven predefined sound categories, a
generative system should generate 100 sound samples each. To fur-
ther specify each sound class, a development set is provided which
consists of 4,850 labeled audio files composed as a mixture from the
UrbanSound8K [15], FSK50K [16] and BBC Sound Effects [17]
datasets. All audio samples are provided (and should be generated)
in mono, with a bit depth of 16-bit and sampling rate of 22,050 Hz,
and a length of four seconds. The seven sound categories along with
the number of samples provided for each class is shown in Table 1.

For the evaluation of the generated samples, the Fréchet Audio
Distance (FAD) [18] is used. To this end, a pretrained classification
model (in the context of the challenge, VGGish [19]) is used to
compute embeddings for two given datasets (i.e., an evaluation and
a generated set of samples). After estimating multivariate Gaussians
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ID Category Number of samples

0 DogBark 617
1 Footstep 703
2 GunShot 777
3 Keyboard 800
4 MovingMotorVehicle 581
5 Rain 741
6 Sneeze/Cough 631

Table 1: Overview of sound categories and number of training sam-
ples in the development set.

Ne and Ng for the evaluation and generation set embeddings, the
Fréchet distance between the two is computed as follows:

F (Ne,Ng) = ∥µe − µg∥2 + tr
(
Σe +Σg − 2

√
ΣeΣg

)
(1)

2.2. Baseline system

The baseline system [20] for this task uses a Vector Quantized-
Variational Autoencoder (VQ-VAE) [21] to transform the mel spec-
trogram of an audio file into a low-dimensional latent representa-
tion. Using this latent representation, a PixelSnail model [22] is
trained to generate vectors in the latent space given the class label.
In the generation phase, these generated vectors are decoded into
mel spectrograms and a Hifi-GAN [23] trained on the same dataset
is used to convert the spectrogram from the frequency domain back
into waveforms in the time domain.

3. MODEL ARCHITECTURE

3.1. Diffusion

Diffusion models [24, 8, 9] build on the idea of iteratively adding
Gaussian noise to a data point sampled from the real distribution
x0 ∼ q(x) over T time steps until xT resembles an isotropic Gaus-
sian distribution, and subsequently learning to reverse the diffusion
process to recreate the true sample from that distribution.

The forward diffusion process is defined as a Markov chain of
diffusion steps producing a sequence of increasingly noisy sam-
ples x1, ..., xT , where each transition is parameterized as a diagonal
Gaussian:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (2)

The amount of noise added at time step t is defined by βt, and
is controlled by a scheduler βt ∈ (0, 1)Tt=1. Typically, βt increases
with increasing time steps. Using a reparameterization trick involv-
ing helper variable αt where αt = 1−βt and ᾱt =

∏t
i=1 αi allows

us to sample xt at any arbitrary time step t. We can interpret ᾱt as
a measure of how much of the original properties of the data point
remains at time step t.

Given that the forward distributions q(xt|xt−1) are modeled as
Gaussians with scheduled mean and variance parameters per time
step, we are interested only in learning the reverse conditionals
pθ(xt−1|xt) to allow us to generate a new sample x0 from p(xT )
through iterative denoising transitions over T steps. Each denois-
ing transition is parameterized as a Gaussian, which takes both the

sample xt and the time step t as inputs to account for different noise
levels associated with different time steps:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)) (3)

Interpreting the combination of q and p as a VAE [25], and con-
sequently, x0 as observed and x1, ..., xT as latent variables, mini-
mizing the negative log-likelihood (NLL) is approached by mini-
mizing the variational lower bound (VLB) (see [24, 8, 9] for the
full formulation).

Further, the reverse process can be reparameterized to allow
the model to predict the noise ϵ, which leads to the following loss
function (see [8] for the derivation):

Lsimple = Et,x0,ϵ[||ϵ = ϵ(xt, t)||2] (4)

Training the reverse model involves sampling a data sample
from the real distribution, x0 ∼ q(x0), a time step from a uni-
form distribution t ∼ U(1, T ) and noise from a normal distribution
ϵ ∼ N (0, I) and minimizing the reparameterized objective func-
tion in Equation 4.

For the synthesis of new samples, we start by sampling the fully
noised sample from a normal distribution, xT ∼ N (0, I). For each
time step t > 1, we sample a noise vector from a normal distribution
z ∼ N (0, I), and iteratively compute xt−1:

xt−1 =
1√
αt

·
(
xt −

1− αt√
1− ᾱt

· ϵθ(xt; θ)

)
+ z ·

√
βt (5)

We repeat this process until we get to t = 1, where we repeat
the same process but take z = 0. The result x0 is then the new
sample.

3.2. U-Net

For the denoising model we choose a U-Net architecture [26] (see
Fig. 1) given its robust latent representation capabilities paired with
the ability to generate fine details. The model functionality resem-
bles that of the baseline VAE, which likewise encodes data into into
a lower-dimensional space before decoding it back into its original
shape. However, the U-Net differs in that it incorporates skip con-
nections between the encoder and the decoder part, which stabilize
training and facilitate convergence by reusing features of the same
dimensionality from earlier layers.

To further improve model performance, we augment the U-Net
using two types of positional encodings, enabling the model to de-
termine the current time step and class label. First, we use a sinu-
soidal position embedding [27], which encodes time step and label
information as a sequence of sine and cosine functions with geo-
metrically increasing wavelengths. We concatenate sinusoidal em-
beddings with the feature map at each down- and upsampling level.
Second, we add another set of label and time step encodings at the
lowest bottleneck representation of the model. This is implemented
using a one-hot encoding and a simple fully connected layer.

4. EXPERIMENTS

4.1. Inter-class and intra-class similarity

To better understand the sample variance between and within
classes, we calculate the inter- and intra-class similarity in terms
of their Fréchet distances. To compute the inter-class similarity of
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Figure 1: U-Net architecture used for classes DogBark, GunShot,
Sneeze/Cough

a given class, we compare a random subset of 100 samples of one
class with random subsets of the same size of each of the other
classes. We follow a similar procedure for the intra-class similarity
computation, where we compute the distance between two random
subsets of 100 samples of the same class (note that samples in those
subsets might overlap).

From the result of the inter-class similarity computation (see
Table 2) we can see that class 4 (MovingMotorVehicle) is particu-
larly dissimilar to the other classes, which partly explains why pre-
training on the entire dataset did not yield improved results for this
class (as opposed to other classes). Given these observations, we
decided to split the classes into separate groups based on their sim-
ilarity, and try pre-training on the group a class belonged to.

class ID 0 1 2 3 4 5 6

0 0 15.67 18.6 18.62 39.99 28.35 15.45
1 15.67 0 13.25 7.38 38.32 21.66 13.10
2 18.6 13.25 0 15.75 35.9 24.68 18.00
3 18.62 7.38 15.75 0 36.11 21.38 14.88
4 39.99 38.32 35.9 36.11 0 20.36 52.15
5 28.35 21.66 24.68 21.38 20.36 0 14.88
6 15.45 13.10 18.00 14.88 52.15 14.88 0

Table 2: ”Similarity matrix” computed as the FAD distances be-
tween each pair of classes in the training set.

4.2. Data preprocessing and augmentation

As part of the preprocessing stage, we apply normalization followed
by a reduction of 2% to prevent digital clipping. To augment the
dataset we perform gain reduction according to a normal distribu-
tion, as well as time shifting on arbitrary time points. Both gain

reduction and time shifting are performed online during training,
resulting in theoretically infinitely augmented data set sizes. This
also allows us to keep the dataset in memory during training.

Figure 2: Training for the class MovingMotorVehicle (class ID 4)
using no offline data augmentation (left), one (middle) and two
(right) rounds augmentation using generated samples.

Given the poor performance of the sound category MovingMo-
torVehicle (class 4), we apply an additional offline data augmen-
tation step by adding generated samples to the dataset, where we
choose the generated samples based on the following procedure: we
train a model on the original (preprocessed and online augmented)
dataset for 400 epochs, and generate 100 samples every 25th epoch.
We then calculate the FAD score between of each of these sets of
100 samples and a random subset of the original training set, se-
lect the model yielding the lowest score, and generate another 1000
samples using this model. Among these samples we select a random
subset of 100 samples 100 times, again calculate the FAD score to
the training set, and subsequently choose the 100 samples closest
to the training set in terms of FAD to add to the training data and
retrain the model. Overall we perform this process, effectively in-
creasing the dataset size for this class by 200 samples and find that it
is effective in lowering the mean FAD scores over the same amount
of epochs (see Figure 2).

4.3. Empirical observations

Diffusion variance scheduler. Determining the number of time
steps T and the optimal amount of noise added at each time step
is a critical consideration. For all our models we chose the number
of time steps to be T = 250, resulting in a significant reduction
in training time. Given the reduced number of time steps, we set a
higher value at the final time step T while applying the same start
value at t0 as [8], i.e., βT = .4 and β0 = 10−4.

Likewise, we experimented with different types of variance
schedulers, specifically linear, sigmoidal and quadratic functions,
and found the quadratic schedule to perform the best for most mod-
els and classes (all except for Moving Motor Vehicle (4), although
the difference was not significant). Looking at Fig. 3, in which we
compare different variance schedulers, we can see that the quadratic
one provides a near-linear decrease in the middle, and more subtle
changes around the start and end of the training process. This curve
pattern has been found beneficial for the denoising process in pre-
vious work [9].
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Figure 3: Comparison of different variance schedulers for the for-
ward diffusion process.

Pretraining. We employed various pretraining strategies, de-
pending on the sound class to be generated and its similarity to
other classes, as described in Section 4.1. For classes DogBark
(ID 0), GunShot (2), and Keyboard (3), we found that pretraining
on the whole or parts of the dataset did not yield significant im-
provement. For classes Footstep (1) and Rain (5), we adopted a
two-stage pretraining approach, where the first stage involved pre-
training on the entire dataset, followed by pretraining on a group
of classes most similar to the target class and eventual finetuning
on each class. For MovingMotorVehicle (4), we obtained the best
results by pretraining exclusively on samples from the same class
and class Rain (5), followed by finetuning. Finally, pretraining on
the whole dataset followed by finetuning yielded the best results for
class Sneeze/Cough (6).

The duration of training varied for each class, ranging from ap-
proximately 600 epochs for the class Keyboard (3) to approximately
4400 epochs for the class Gunshot (2). We trained all our models
using the Adam optimizer [28] and a learning rate of 10−4.

Model Sizes. We experimented with models of different sizes
which all followed a U-Net architecture, differing either in ker-
nel sizes, channel sizes and/or number of convolutional layers, and
achieved the best results with two small models with 170k and
620k parameters each, and a bigger model with 1.4M parameters.

For classes DogBark (0), Gunshot (2), MovingMotorVehicle
(4) and Sneeze/Cough (6) we obtained the best results with our
biggest model, which corresponds to Figure 1. At each level in the
downsampling path, two one-dimensional convolutions are com-
puted with kernel sizes of 9 and padding of 4 to restore the original
sample size. This is followed by a pooling layer with a kernel size
of 4 and a stride of 4, resulting in the down-sampled signal having a
size of 1

4
of the sample size at the preceding level. At each level in

the upsampling path, two convolutions using the same kernel size
and amount of padding are computed, after which the signal is ex-
panded using transposed convolution with a kernel size of 4 and
stride of 4.

For classes Footstep (1) and Rain (5), we used a similar model
structure but applied increasing kernel sizes in the downward path,
along with decreasing kernel sizes in the upward path. For the class
Keyboard (3) we obtained the best result using our smallest model,

Class Train Baseline Ours

DogBark 1.47 13.41 8.60
Footstep 2.48 8.11 9.33
GunShot 3.27 7.95 11.77
Keyboard 3.86 4.84 6.41

MovingMotorVehicle 7.02 16.11 30.66
Rain 4.52 13.34 9.74

Sneeze/Cough 0.64 4.01 10.50

Mean 3.32 9.68 12.42

Table 3: FAD scores for the training set, baseline model and gener-
ated samples from our models.

which differs in structure to that of our biggest one in the number
of channels used at each level.

Overall, our ensemble of models of different sizes has a param-
eter count of 7.1M parameters compared to the 105M parameters in
the cascaded baseline model.

Results. Using our ensemble of models and class-specific train-
ing schedule, we were able to surpass the baseline score for the
DogBark (0) and Rain (5) classes, and obtain comparable results
for the classes Footstep (1) and Keyboard (3). An overview of the
final FAD scores our ensemble achieved can be seen in Table 3,
along with the FAD scores computed for (a random subset) of the
training set, and generated samples of the baseline model.

5. CONCLUSION

We presented our approach for Task 7, Foley sound synthesis, track
B (i.e., without the use of external models and datasets except those
provided) in this technical report. To generate samples in seven pre-
defined sound categories, we used an ensemble of U-Net based dif-
fusion models. We outlined data preprocessing as well as online and
offline augmentation techniques used, and reported our findings and
observations with respect to experiments with different pretraining
strategies and model configurations.

Overall, our ensemble of models is significantly more parame-
ter efficient (totaling a parameter count of 7.1M compared to 105M
in the challenge baseline model) and allows for end-to-end genera-
tion of audio waveforms. We report a final mean FAD score over all
sound classes of 12.42 compared to the baseline score of 9.68.
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