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ABSTRACT
In this technical report, we describe our systems for DCASE 2023
Challenge Task4a. Our systems are mainly based on Frequency Dy-
namic Convolutional Recurrent Neural Network (FDYCRNN) and
Mutual Mean Teaching (MMT) semi-supervised strategy. In order
to prevent overfitting, we adopt data augmentation using mixup,
frame shift, SpecAugment, FilterAugment, Interpolation Consis-
tency Training (ICT) and Shift Consistency Training (SCT). Be-
sides, we utilize strongly labeled AudioSet data as external data and
several pretrained models to further improve performance, and try
an ensemble of multiple systems with different pretrained models
to enhance the generalization capability of our system.

Index Terms— Sound event detection, semi-supervised learn-
ing, pretrained model, mutual mean teaching

1. INTRODUCTION

Sound Event Detection (SED) is designed to detect sound event cat-
egories and their corresponding onset and offset times (timestamps)
within sound clips. In supervised learning, to accomplish this task
better, a large amount of data with strong labels is required. How-
ever, labeling the collected data manually is extremely expensive,
thus, high-quality datasets are difficult to obtain. To solve this prob-
lem, many semi-supervised learning methods that use weakly la-
beled data and unlabeled data with limited strongly labeled data are
proposed.

Labels for weakly labeled data include only sound event cat-
egories without event timestamps and unlabeled datasets where
labels are completely uninformative. In semi-supervised learn-
ing, pseudo-label are often used to deal with non-strongly labeled
datasets. [1, 2, 3] first train models with certain performance, and
use the model to predict the strong label of the non-strong label data
to obtain the pseudo-strong label. In order to take full advantage of
weakly labeled datasets and unlabeled datasets, [4] proposed to use
the mean teacher (MT) framework for SED. More specifically, the
MT framework performs supervised training on labeled data, and
self-supervised training on both labeled and unlabeled data. The
self-supervised part of the MT uses the teacher model to predict.
While the loss is calculated between the teacher prediction and the
student prediction. To some extent, the teacher model is used for
pseudo-label prediction. In order to further improve the robustness
and stability of the self-supervised part of the MT, [5] proposed
MMT. MMT leverages the output of peer networks to mitigate noise
in pseudo-labels, and leverages the complementarity of this output
to optimize each other.

In this report, we use FDYCRNN to build MMT. To further
improve the model performance, we also incooperate several pre-
trained models and data augmentations in .

2. METHOD

2.1. Frequency Dynamic Convolution for SED

Nam et al. demonstrated that the frequency-domain energy dis-
tribution of different events in the SED is different[6]. Convolu-
tional neural networks (CNNs), commonly used in deep learning,
are translation invariant But for SED, this property may misjudge
two events with similar energies but different distributions, thus de-
grading the overall performance of the SED task.

Dynamic convolution enhances representation capability of
CNNs by applying input-adaptive kernel on convolution layer. By
extracting attention weights for the weighted sum of basis kernels,
dynamic convolution generates appropriate kernel for given input.
This means dynamic convolution can overcome the translation in-
variance of convolution. Here, we use the frequency dynamic con-
volution proposed by [6]1.

2.2. Mutual mean teaching

MMT framework generates soft pseudo labels by collaboratively
training two same networks with different initializations. In addi-
tion to the hard labels, two collaborative networks also generate
on-line soft pseudo labels by network predictions for training each
other. However, such soft labels are generally not perfect because of
the training errors. To avoid two networks collaboratively bias each
other, the past temporally average model of each network instead
of the current model is used to generate the soft pseudo labels for
the other network. Both off-line hard labels and on-line soft pseudo
labels are utilized jointly to train the two collaborative networks.

We denote the two collaborative networks as F(·|θ1) and
F(·|θ2) respectively. To simultaneously train the coupled networks,
we feed the same audio batch to the two networks but with differ-
ent data augmentations. Each target-domain audio can be denoted
by x and x for the two networks, and their pseudo label confidences
can be predicted as F(x|θ1) and F(x′|θ2). One naive way to train
the collaborative networks is to directly utilize the above pseudo
label confidence vectors as the soft pseudo labels for training the
other network. However, in such a way, the two networks’ pre-
dictions might converge to equal each other and the two networks

1https://github.com/frednam93/FDY-SED



Detection and Classification of Acoustic Scenes and Events 2023 Challenge

lose their output independences. The classification errors as well as
pseudo label errors might be amplified during training. In order to
avoid error amplification, we propose to use the temporally average
model of each network to generate reliable soft pseudo labels for
supervising the other network. Specifically, the parameters of the
temporally average models of the two networks at current iteration
T are denoted as ET [θ1] and ET [θ2] respectively, which can be
calculated as

ET [θ1] = αET−1[θ1] + (1− α)θ1,

ET [θ2] = αET−1[θ2] + (1− α)θ2,
(1)

where ET−1[θ1], ET−1[θ1] indicate the temporal average parame-
ters of the two networks in the previous iteration T − 1, the initial
temporal average parameters are E(0)[θ1] = θ1, E(0)[θ2] = θ2, and
α is the ensembling momentum to be within the range [0, 1). The
robust soft pseudo label supervisions are then generated by the two
temporal average models as F(x′|ET [θ1]) and F(x|ET [θ2]) respec-
tively. The soft classification loss for optimizing θ1 and θ2 with the
soft pseudo labels generated from the other network can therefore
be formulated as

Lθ1 = Lbce,strong(F(x|θ1)strong, ystrong)

+ Lbce,weak(F(x|θ1)weak, yweak)

+ λLmse(F(x|θ1),F(x|ET [θ2])),

Lθ2 = Lbce,strong(F(x
′|θ2)strong, ystrong)

+ Lbce,weak(F(x
′|θ2)weak, yweak)

+ λLmse(F(x′|θ2),F(x′|ET [θ1])),

Ltotal = Lθ1 + Lθ2 ,

(2)

2.3. Pretrained model

The pretrained models we use in our system are AST[7],
PANNS[8], PASST[9], HTSAT[10] and BEATs[11]. AST is the
first convolution-free, purely attention-based model for audio clas-
sification. While PANNS achieves the state-of-the-art performance
(0.439 mAP on AudioSet) in CNN based architecture. PASST is
also a transformer-based audio classifier, while it requires less com-
puting consumption and is faster to train. HTSAT is a lightweight
audio transformer with a hierarchical structure. BEATs is an itera-
tive audio pretraining framework to learn bidirectional encoder rep-
resentation from audio transformers, where an acoustic tokenizer
and an audio self-supervised learning model are optimized by it-
erations. Because these pretrained models have different temporal
resolutions, we use interpolation or adaptive pooling to align the
features extracted by these pretrained models with CNN features.
These aligned features are regard as frame-level features and then
concatenated with CNN features from SED model. Since we found
in the previous experiments that the effect of the features of BEATs
is much better than that of other pretrained models, while using
the BEATs features fixedly, we selected one of the other pretrained
models, and use the features of it with BEATs features and CNN
features to fuse. There are two options for feature fusion. One is
to directly concatenate the three kinds of features and fuse them by
1 × 1 convolution to a fixed dimension. The other is to fuse two
pretrained features first, and then fuse it with the CNN features.

2.4. Weak prediction

As PSDS2 focuses on avoiding confusion between classes rather
than the localization of sound events, we only predict weak labels of
clips and set timestamp to start and end of the entire duration of the
audio. This method can greatly improve the PSDS2 scores. During
the training stage, we don’t use the strongly labeled data. Instead,
all the strongly labeled datasets are relabeled weakly. The loss is
calculated as the sum of supervised weak loss and self-supervised
weak loss.

3. DATASET AND DATA PROCESS

All of the dataset we use in our training are described as follows

• Unlabeled in domain training set: 14412 clips.
• Synthetic strongly labeled training set: 10000 clips.
• Weakly labeled training set: 1578 clips.
• Strongly labeled validation set: 1168 clips.
• Strongly labeled AudioSet data as external data: 3470 clips.

All audio are resampled to 16kHz and down sampled to mono.
We use log-mel energies as acoustic feature and extract 128 dimen-
sional log-mel spectrogram using 2048 STFT window with a hop
length of 256. In order to deal with the variable lengths of audio,
we set a maximum padding length. All shorter feature will be zero
padding to the padding length. When it is longer, it will be trun-
cated. In this work, maximum padding length is set to 626.

During the training stage, we apply mixup, frame shift,
SpecAugment[12] and FilterAugment[13] these four data augmen-
tations in our system to increase the robustness. Besides, we also
apply ICT and SCT. More implement details about ICT and SCT
are available in [14].

4. EXPERIMENT

4.1. Experiment setup

The systems are trained using the Adam optimizer, with a maximum
learning rate of 0.001, and a learning rate ramp up during the first
50 epochs. Each system is trained for a total of 200 epochs. The
batch size is set to 4, 4, 8 for strongly labeled data, weakly labeled
data and unlabeled data respectively in a batch. In our experiments,
we save the top5 models for PSDS1 and PSDS2 separately, which
can be further used for model ensembling. Because each event class
differs in duration length, we use the class-wise median filter. For
pretrained models, we adopt the officially released pretrained model
checkpoints that works best on AudioSet.

4.2. System without pretrained model

Table 1: Results of system without pretrained model
System PSDS1 PSDS2

Baseline-MT 0.359 0.562
FDYCRNN-MT 0.412 0.637

FDYCRNN-MT + data augmentation 0.449 0.702
FDYCRNN-MMT 0.457 0.707
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Table 1 shows the results of system without pretrained model
on validation set. Baseline-MT and FDYCRNN-MT have the same
training process, data augmentations and semi-supervised strategy.
The only difference is that the models adopted are different, where
Baseline uses CRNN. FDYCRNN-MT + data augmentation applies
the data augmentations mentioned in 3. And FDYCRNN-MMT is
trained with MMT framework.

4.3. System with pretrained model

Table 2: Results of system with pretrained model

System Pretrained Pretrained PSDS1 PSDS2model 1 model 2
Baseline-MT - BEATs 0.500 0.762

FDYCRNN-MMT

AST BEATs 0.513 0.783
PANNS BEATs 0.518 0.790
PASST BEATs 0.502 0.774
HTSAT BEATs 0.506 0.795

Table 2 shows the results of system with pretrained model on
validation set. When training the system with pretrained models,
the external strongly labeled AudioSet data are also utilized. As can
be seen from the Table 2, the system based on FDYCRNN-MMT are
not much better than the baseline. We speculate that this is because
the features extracted by BEATs is too powerful, so that during the
training process, the model is easily overfitted to pretrained features,
resulting in the CNN part of FDYCRNN didn’t work.

4.4. System ensemble

Table 3: Results of ensembled system

System Pretrained Weak PSDS1 PSDS2model prediction

FDYCRNN-MMT

0.475 0.721
✓ 0.065 0.815

✓ 0.535 0.806
✓ ✓ 0.087 0.875

Table 3 shows the results of system ensembled with several
models on validation set. Pretrained model means the features ex-
tracted by pretrained models are utilized, while the systems with
different pretrained models, alignments and fusion strategies are en-
sembled.

5. CONCLUSION

In this report, we present our systems used in the task 4 of DCASE
2023 Challenge. We adopt mixup, frame shift, SpecAugment, Fil-
terAugment, ICT and SCT for data augmentation. We apply MMT
strategy on FDYCRNN model. Besides, we add external data and
pretrained model to further improve performance.
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