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ABSTRACT

This report contains a description of the Fraunhofer FKIE submis-
sion for task 2 “First-Shot Unsupervised Anomalous Sound Detec-
tion for Machine Condition Monitoring” of the DCASE challenge
2023. The submitted system is an adaptation of a previously pro-
posed embedding model for extracting representations of audio data
suitable for detecting anomalous sounds in domain shifted condi-
tions. The model consists of two sub-models utilizing static and
dynamic frequency information and is trained through an auxiliary
classification task using the sub-cluster AdaCos loss. In this work,
a modified version of mixup is presented and shown to improve
the performance, especially increasing the partial area under the re-
ceiver operating characteristic curve. As a result, the proposed sys-
tem is shown to significantly outperform both baseline systems of
the challenge.

Index Terms— anomalous sound detection, domain general-
ization, first-shot classification, machine listening

1. INTRODUCTION

Semi-supervised anomalous sound detection (ASD) for machine
condition monitoring has been a task at the DCASE challenge for
several years [1, 2, 3]. For all of these tasks, only normal sam-
ples have been provided as training data and the goal is to develop
a system that automatically detects anomalous sounds of machines
in noisy audio recordings during inference. In 2021 [2], domain
shifts between a source domain with many training samples and a
target domain, which consists of recordings under modified acous-
tic conditions caused by changed machine parameters or a different
acoustic environment and for which only a few training samples are
available, were introduced to the task. ASD systems needed to be
adapted from source to target domains and perform well for both
domains. In 2022 [3], this was extended to a domain generaliza-
tion setting meaning that ASD systems need to work properly in
source and target domain without needing to modify the system for
particular domain shifts. This year’s challenge task is titled “First-
Shot Unsupervised Anomalous Sound Detection for Machine Con-
dition Monitoring” [4]. The main differences to previous editions
of the ASD task are that 1) the development and evaluation set con-
tain mutually exclusive machine types and 2) for each machine type
only recordings of a single machine (but with different settings) are
available. Thus, ASD systems submitted to the challenge cannot be
fine-tuned for specific machine types on the development set and ex-
pected to perform well on the evaluation set. Furthermore, training

embeddings using an auxiliary classification task is more difficult
because different machine IDs cannot be used as classes. The or-
ganizers provide two baseline systems based on autoencoders using
1) the mean squared error (MSE) or 2) the Mahalanobis distance
(MAHALA) as an anomaly score [5]. The dataset is a subset of
ToyADMOS2 [6] and MIMII DG [7].

One particular strategy to improve the performance of ASD
sytems is to simulate anomalies by modifying normal samples and
teach the system to detect these simulated anomalies. However,
without having access to anomalous samples it is difficult to gener-
ate realistic anomalies from scratch and therefore relatively generic
methods are used for this purpose. Several works utilized data
belonging to other machines of the same or other machine types
[8, 9, 10] as proxy outliers. Note that using an auxiliary classifi-
cation task for training the model uses the same approach implic-
itly. Another approach is to use data augmentation techniques and
treat augmented samples as if they belong to another class (self-
supervised learning). [11] used pitch shifting, time stretching and
image transformations of the spectrograms and [12] used mixup
[13] with a fixed small mixing coefficient. Recently, [14] proposed
a method called statistics exchange and showed that this approach
outperforms applying mixup when simulating anomalies. Statis-
tics exchange consists of swapping first- and second-order statis-
tics of two normal samples for randomly chosen consecutive fre-
quency bands or time frames. A more complex procedure to sim-
ulate anomalous samples is described in [15]. Here, the authors
proposed a rejection sampling algorithm that uses latent representa-
tions of an autoencoder and a Gaussian mixture model to generate
anomalous sounds.

The contributions of this work are the following. First and
foremost, a conceptually simple state-of-the-art first shot ASD sys-
tem with strong domain generalization capabilities submitted to the
DCASE challenge 2023 is presented1. Second, a variant of mixup
for simulating anomalies during training is proposed. In experimen-
tal evaluations conducted on the development set it is shown that the
proposed system significantly outperforms both baseline systems of
the challenge task.

2. OWN BASELINE SYSTEM

The overall structure of the proposed ASD system is based on the
system presented in [16] and is specifically designed for general-

1Open-source implementations of our baseline system and the proposed
system are available at: https://github.com/wilkinghoff/
DCASE2023_task2

https://github.com/wilkinghoff/DCASE2023_task2
https://github.com/wilkinghoff/DCASE2023_task2
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Figure 1: Structure of our own baseline system, adapted from Figure 1 in [16]. Representation size in each step is given in brackets.

izing well to multiple domains. This system is an improved ver-
sion of our submissions to previous editions of the challenge task
[17, 18] and is trained by solving an auxiliary classification task to
learn projecting data into a suitable embedding space where, ide-
ally, anomalous and normal samples can be easily separated. Since
the proposed system closely resembles this system with only some
modifications, we will now review it and use it as an additional base-
line system. Note that in contrast to other state-of-the-art systems,
that use different parameter settings depending on the machine type
to optimize the performance [19, 20, 21] and thus are not applicable
in a first-shot setting, our system uses the same parameter settings
for all machine types while reaching a similar performance and thus
can also be used in this year’s edition of the challenge task.

Our own baseline system is depicted in Figure 1 and consists of
three main blocks: 1) A frontend for computing input feature repre-
sentations, 2) an embedding model for projecting the input feature
representations into an embedding space and 3) a backend for com-
puting anomaly scores. All of these three main blocks will now be
discussed in more detail.

2.1. Frontend

To capture dynamic as well as static frequency information, two dif-
ferent input feature representations are used. This has been shown
to significantly improve the ASD performance [16]. Before com-
puting any feature representations, all waveforms are adjusted to
have the same length by repeating all waveforms (and randomly
cropping them) until they share the length of the longest waveform.
As a first feature representation, we used the full magnitude spec-
trum to have a very high frequency resolution. Second, we used
the magnitude spectrogram with a window length of 1024 and a
hop size of 512 and subtracted the temporal mean to remove static
frequency information.

2.2. Embedding model

Our baseline system utilizes the sub-cluster AdaCos loss [22],
which is an angular margin loss with multiple class-centers for each
class using a dynamically adaptive scale parameter as proposed in
[23], This loss has been shown to outperform a standard angular
margin loss when detecting anomalous sounds [22] even in domain-
shifted conditions [24]. For each of the two input feature represen-
tations the model uses a specifically designed convolutional neural
network (CNN) as a sub-network. The sub-network for the magni-
tude spectra consists of three one-dimensional convolutions and a
flattening operation followed by five dense layers with 128 neu-
rons each. For the magnitude spectrograms, a modified ResNet

architecture consisting of four residual blocks, a max-pooling op-
eration over time and a flattening operation in combination with a
dense layer having 128 neurons is used. The output of both sub-
networks is concatenated resulting in an embedding of size 256 for
each recording. More details about the embedding model and its
sub-networks can be found in [16].

The model is trained for ten epochs with a batch size of 64 by
minimizing the sub-cluster AdaCos loss with 16 sub-clusters per
class. For the classification task, all different machine types and
values of provided attribute information are used resulting in a total
of 186 classes when using all normal training samples of the devel-
opment and evaluation set. To avoid learning trivial projections to
the class centers, no bias terms are used and the randomly initial-
ized class centers are not adapted during training as proposed for
one-class classification in [25]. For data augmentation, mixup [13]
with a mixing coefficient drawn from a uniform distribution is used.

2.3. Backend

The backend of the system consists of three steps. For the source
domain, k-means with k = 16 is applied to obtain 16 means for
each machine type and all cosine distances to a given test sample
are computed. For the target domain, the cosine distances between
all 10 normal samples belonging to a machine type and a given test
sample are computed. As a last step, the anomaly score is defined as
the minimum over all 26 computed cosine distances. Thus, a larger
anomaly score indicates an anomalous sample while a smaller value
indicates a normal sample.

3. PROPOSED SYSTEM

The general structure of the proposed system is the same as the
baseline system presented in section 2. In this section, only the
modifications of this system will be presented. As a first change,
when computing the cosine distances for the source domain the
means of all normal samples with the exact same attribute infor-
mation have been used resulting in multiple mean embeddings for
each machine type instead of applying k-Means. The other modifi-
cation is a variant of mixup [13] and will now be discussed in more
detail.

3.1. Mixup variant

To simulate anomalies during training, we propose a variant of
mixup [13] as depicted in Figure 2. Classically, mixup is defined
as follows: Let x1, x2 be some input data samples and y1, y2 ∈
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Figure 2: Proposed mixup variant used for training the embedding model. All blocks colored in yellow are also used for standard mixup, all
blocks colored in red make are only used for the proposed mixup variant.

{0, 1}N with
∑N

n=1 y1(n) = 1 =
∑N

n=1 y2(n) be the correspond-
ing categorical labels where N ∈ N denotes the number of classes.
Then, the mixed-up samples and labels are defined as random linear
interpolations, i.e.

xmixed = λ · x1 + (1− λ)x2

ymixed = λ · y1 + (1− λ)y2

for a random mixing coefficient λ ∈ [0, 1] drawn from a Beta distri-
bution. The idea of the proposed mixup variant is to use randomly
mixed-up samples as simulated anomalous samples similar to the
idea proposed in [12]. But instead of only using mixed-up samples
as an additional anomalous class with a fixed (small) mixing coeffi-
cient, the model needs to recognize the classes that are mixed-up as
well as the mixing coefficient as it is the case for standard mixup,
too. This can also be seen as some type of self-supervised learning.
In the proposed variant, mixup is applied by doubling the number
of classes and using one half of the classes for original data samples
that have not been mixed, and using the other half for mixed-up
data. Hence, the original samples as well as the mixed-up samples
have to be recognized correctly but the model needs to be able to
discriminate between original and mixed-up samples. Furthermore,
label smoothing [26] with a random value p ∈ [0, 1

2
] is applied to

the original labels. This means that a categorical label y ∈ {0, 1}N

with
∑N

n=1 y(n) = 1 is replaced with

ysmoothed,p =

{
1− p+ p

N
if y(n) = 1

p
N

if y(n) = 0.

Here, the idea of applying label smoothing is to avoid that the model
overfits to the classes and also to relax the requirements of strictly
differentiating between non-mixed and mixed data samples. During
training, the mixed-up waveforms and labels, or the original wave-
forms and smoothed labels are randomly chosen to be provided as
training data. Note that in contrast to many other systems, the wave-
forms and not the spectral representations of the data are mixed for
our proposed approach. This has the advantage that both input fea-
ture representations utilize the same (or no) mixing coefficient.

3.2. Setting a decision threshold

In a semi-superved ASD setting, a decision threshold has to be es-
timated using normal samples only. This is a very difficult task by
itself. To our best knowledge, the only viable strategy is to find a

decision threshold that separates the extreme values of the anomaly
scores belonging to the normal samples from the rest and hope that
this threshold also works well for separating anomaly scores be-
longing to anomalous samples from those belonging to normal sam-
ples [27]. There are several methods available for estimating a deci-
sion threshold. In [27], it has been shown that multi-stage methods
outperform single-stage methods but in most cases the differences
in performance between different methods are only marginal. Since
the final metric of the challenge task does not include a decision
threshold and thus estimating a good decision threshold is not im-
portant for the challenge, we simply assumed a uniform distribution
of the anomaly scores and used the 90th percentile as the decision
threshold as done in previous years [17, 18].

4. SUBMISSIONS

In total, three different systems have been submitted to the chal-
lenge. The first submission is an ensemble consisting of the mean
of the anomaly scores obtained with ten independently trained ver-
sions of our baseline system as presented in [16]. The second sub-
mission is an ensemble consisting of the maximum of the anomaly
scores belonging to ten independently trained versions of the pro-
posed systems. As a third submission, we submitted an ensemble of
the other two submissions by taking the maximum of the anomaly
scores belonging to both systems. Hence, this ensemble consists of
twenty subsystems.

5. RESULTS

The experimental results obtained on the development set with our
three submitted systems as well as both baseline systems of the chal-
lenge can be found in Table 1. On the target domain, it can be seen
that the presented systems, in general, perform much better on than
both baseline systems. Although on the source domain the perfor-
mance of our systems is worse in some cases, namely for the ma-
chine types “ToyCar” and “ToyConveyor”, the performance of our
systems on mixed domains is much better or at least comparable.
Overall, the performance of our presented systems is significantly
better than the ones obtained with the baseline systems.

When comparing the performance of our own baseline system
to the proposed system, for some machine types as for example
“ToyCar” and “fan” the performance degrades with the proposed
changes but for others, most notably the machine type “valve” the
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Table 1: AUCs and pAUCs per machine type obtained on the development set with both baseline systems of the challenge, the ASD system
presented in [16] and the proposed system as well as an ensemble of both systems. The last row contains the harmonic mean taken over all
machine types. Highest AUCs and pAUCs in each row are highlighted in bold letters.

dataset split baseline systems
MSE [5] MAHALA [5] own baseline [16] proposed system ensemble

machine type domain AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC

ToyCar source 69.96% 49.05%49.05%49.05% 76.44%76.44%76.44% 48.00% 53.32% 48.00% 50.04% 48.00% 52.36% 48.00%
ToyCar target 47.28% 57.47%57.47%57.47% 45.56% 49.68% 68.00%68.00%68.00% 53.47% 63.36% 51.79% 63.68% 51.79%
ToyCar mixed 58.62% 53.63%53.63%53.63% 61.00%61.00%61.00% 49.58% 60.32% 48.00% 55.98% 48.79% 57.04% 48.79%

ToyTrain source 57.86%57.86%57.86% 47.58% 54.96% 47.37% 48.52% 47.79% 55.60% 48.2248.2248.22% 55.60% 48.21%
ToyTrain target 57.18% 49.68% 41.64% 49.47% 67.72%67.72%67.72% 54.53%54.53%54.53% 63.64% 53.05% 63.72% 53.05%
ToyTrain mixed 57.52% 48.32% 48.30% 48.00% 57.92% 48.37% 59.71% 50.11%50.11%50.11% 59.76%59.76%59.76% 50.11%50.11%50.11%

bearing source 65.24% 59.58% 64.62% 60.42% 82.40% 64.00% 85.00%85.00%85.00% 76.63%76.63%76.63% 85.00%85.00%85.00% 76.63%76.63%76.63%
bearing target 54.74% 48.00% 53.02% 49.47%49.47%49.47% 68.56% 47.58% 71.64%71.64%71.64% 48.63% 71.64%71.64%71.64% 48.63%
bearing mixed 59.99% 49.89% 58.82% 50.05% 75.57% 51.42% 78.16%78.16%78.16% 56.47%56.47%56.47% 78.16%78.16%78.16% 56.47%56.47%56.47%

fan source 73.16% 56.21% 79.12% 56.21% 86.80%86.80%86.80% 66.95%66.95%66.95% 82.76% 61.68% 82.84% 61.68%
fan target 31.98% 63.37% 36.64% 63.79%63.79%63.79% 73.64%73.64%73.64% 51.37% 65.76% 53.68% 66.12% 53.68%
fan mixed 52.57% 59.37%59.37%59.37% 57.88% 59.26% 78.96%78.96%78.96% 52.32% 72.23% 53.00% 72.46% 53.00%

gearbox source 60.18% 52.00% 71.82% 57.68% 84.48% 68.84%68.84%68.84% 87.60%87.60%87.60% 66.53% 87.60%87.60%87.60% 66.53%
gearbox target 60.26% 56.00% 70.50% 55.79% 80.84% 60.63% 84.92%84.92%84.92% 62.53%62.53%62.53% 84.68% 62.53%62.53%62.53%
gearbox mixed 60.22% 53.79% 71.16% 56.37% 82.38% 65.21%65.21%65.21% 85.55%85.55%85.55% 63.26% 85.41% 63.26%

slide rail source 69.54% 59.58% 83.96% 61.05% 99.36% 96.63% 99.60%99.60%99.60% 97.89%97.89%97.89% 99.60%99.60%99.60% 97.89%97.89%97.89%
slide rail target 47.30% 52.00% 74.28% 49.89% 88.68% 68.63% 93.72%93.72%93.72% 77.05%77.05%77.05% 93.72%93.72%93.72% 77.05%77.05%77.05%
slide rail mixed 58.42% 56.63% 79.12% 54.21% 91.96% 72.68% 95.71%95.71%95.71% 81.95%81.95%81.95% 95.64% 81.95%81.95%81.95%

valve source 56.90% 54.95% 55.26% 52.63% 91.60% 64.63% 99.24%99.24%99.24% 96.21%96.21%96.21% 98.88% 94.32%
valve target 51.52% 50.74% 51.96% 50.74% 86.36% 58.53% 98.96%98.96%98.96% 94.53%94.53%94.53% 98.96%98.96%98.96% 94.53%94.53%94.53%
valve mixed 54.21% 51.10% 53.61% 50.84% 87.02% 59.95% 98.54%98.54%98.54% 92.63%92.63%92.63% 98.13% 91.32%

all mixed 57.23% 53.01% 59.97% 52.35% 74.27% 55.62% 74.84% 60.43%60.43%60.43% 75.10%75.10%75.10% 60.35%

performance improves. Overall, the AUC score of both systems is
very similar but the pAUC score of the proposed system is signifi-
cantly higher. Hence, the proposed changes appear to improve over-
all performance. Using an ensemble of both systems leads to a very
similar performance as the proposed system alone and thus training
such a large ensemble does not seem to be helpful and certainly not
to be necessary. The final results of the challenge are expected to
give more insights on this by measuring how effective the proposed
changes really are.

6. CONCLUSIONS

In this work, a first-shot ASD system for task 2 of the DCASE
challenge 2023 has been presented. The system is based on a pre-
viously proposed embedding model trained by using an auxiliary
classification task and a novel mixup variant for ASD. In experi-
ments conducted on the development set of the challenge task, it
has been shown that the proposed system significantly outperforms
both baseline systems of the challenge. Furthermore, training the
embedding model with the proposed mixup variant helps to improve
the performance, especially by increasing the resulting pAUC. For
future work, it is planned to conduct additional ablation studies and
compare the performance of our proposed system to the ones ob-
tained with other systems submitted to task 2 of the DCASE chal-
lenge 2023.
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