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ABSTRACT

Sound Event Localization and Detection (SELD) is a task that in-
volves detecting different types of sound events along with their
temporal and spatial information, specifically, class-level events de-
tection and their corresponding direction of arrivals at each frame.
In DCASE 2023 Task 3, the recordings consist of real-world sound
scenes with complex conditions, which contain simultaneous occur-
rences of up to 3 or even 5 events. Our submitted system for this
task is based on the previously proposed method, PILOT (Proba-
bilistic Localization of Sounds with Transformers). While PILOT
combines transformers with CNN-based feature extraction modules
and covers Sound Event Localization (SEL) tasks with sound ac-
tivity detection, it requires modifications to address SELD tasks.
In our architecture, we adapt PILOT’s input features and output
branches to SELD tasks and revise the loss function accordingly.
We name our model Probabilistic Localization and Class of Sounds
with Transformers (PLCST). Unlike other approaches, we do not
generate additional samples from the development dataset or use
other datasets for training, aiming to mitigate discrepancies. In ad-
dition, another benefit of our model is that the number of parameters
is relatively small. Our experimental results demonstrate improve-
ments in our system over the baseline methods.

Index Terms— Sound event localization and detection, trans-
former

1. INTRODUCTION

The purpose of the sound event localization and detection (SELD)
task is to detect various types of activating sound events and localize
them in the temporal and spatial domains. SELD technology can be
used in numerous areas, such as improving speech quality for auto-
matic speech recognition (ASR) and audio surveillance system for
smart cities. Because of this task’s prospect, SELD draws attention
from both industry and academics.

Since this challenge started in the year of 2019, some relevant
requirements of this task have been changed. For example, in the
first 3 years of the challenges (the year 2019 to 2021), emulated
multichannel recordings are provided. They spatialized event sam-
ple banks with spatial room impulse responses (SRIRs) in differ-

ent rooms and mixed with spatial ambient noise recorded at the
same locations to generate those recordings. The last year, in chal-
lenge 2022, the providing dataset changed to recordings of real
sound scenes with manual annotations. Similar to previous iter-
ations, this year, DCASE provides a dataset recorded from real
scenes, which is named as Sony-TAu Realistic Spatial Soundscapes
2023 (STARSS23). Compared to the STARSS22 dataset used in
DCASE2022, it adds an additional 4 hours of material captured
in Tampere University distributed between the training and evalu-
ation sets while all STARSS22 are maintained [1]. Different from
datasets, the baseline for this task does not change too much. In
the series, the baseline system selects a straightforward convolu-
tional recurrent neural network (CRNN) from SELDNet with few
modifications [2]. First, multi-head self-attention blocks are intro-
duced [3]. In addition, Multi-ACCDOA is used to support detect-
ing multiple instances of the same class when they are overlapping
[4]. Finally, SALSA-lite [5] features are utilized for the microphone
version of the dataset. This is to overcome the poor performance of
GCC features in the presence of multiple overlapping sound events.

In this report, we use the part of the Probabilistic Localization
of Sounds with Transformers (PILOT) as our network’s architec-
ture for this task [6]. Considering that the original PILOT can only
detect sound events’ activity rather than their types, we modified
the input features and output branch to suit the SELD task. The
whole network has four components, including the feature extrac-
tion module, the transformer encoder, the linear Gaussian system,
and the classification network. Due to time constraints, we didn’t
generate data and used the development dataset for training only,
and the complex features were not applied to the network. How-
ever, we will extend our work for the workshop and solve these
problems.

The rest of this report is organized as follows. In Section 2,
the proposed method and its training process are described. Sec-
tion 3 shows the result of the proposed method on the development
dataset. The last section concludes the experiments and provides
some information linking to our extended work for the workshop.
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2. PROPOSED METHOD

In this section, we provide an overview of the proposed network and
its training processing. More details will be given in the workshop’s
paper.

2.1. Network Architecture

As mentioned in previous sections, the whole network has 4 differ-
ent components, including the feature extraction module, the trans-
former encoder, the linear Gaussian system, and the classification
layers.

The first component is the feature extraction module, designed
to extract features from the input features map and generate em-
beddings for the rest network. Considering that both SELDNet and
PILOT perform well in SELD and Sound event localization (SEL)
tasks, we derive ideas from those networks. This module is con-
structed as three-layer CNNs followed by a fully-connection net-
work. Each layer contains 64 kernels with the size of 3 × 3. Also,
each conv layer is followed by batch normalization, rectified lin-
ear units (ReLU), and max-pooling. Similarly, the fully-connection
network has three layers, with intermediate and final output dimen-
sions 128. Finally, the output from the fully-connection network
will be applied with two different linear layers to generate two em-
beddings, including positional embeddings and observation noise,
for both the transformer encoder and the linear Gaussian system.

Next, the second component is the transformer encoder. We
didn’t amend the structure of the original transformer encoder. The
parameters setting of the transformer encoder is listed as follows.
The encoder has three layers, and each encoder layer contains 8
multi-heads. The dimensions of the input embedding and feedfor-
ward are 32 and 1024, respectively.

The output of the encoder will be applied by the linear Gaus-
sian system and a classification network. The details of the linear
gaussian system can be found in the original paper of PILOT [6].
The classification network is a three-layer fully-connection network
with intermediate dimensions 256 and 128, respectively.

The overview of the proposed network is shown in Figure 1.

Figure 1: The overview of the proposed method’s structure.

2.2. Network Training

Due to the time limitation, we only adopt the basic features pro-
cessed on FOA types recordings in the dataset for the proposed net-
works. Therefore, we use the scripts offered by baseline to apply
STFT with the default parameters settings on the recordings to ob-
tain spectrograms for the phase map, which will be used for SEL.
Considering that we need to classify different types of each sound
event, we also extract mel spectrograms by provided scripts. Then,

Table 1: Example of a figure with experimental results.

Methods ER20 F20 LECD LRCD

mACCDOA baseline (p) 0.57 48.7 22 47.7
mACCDOA baseline (w) 0.74 15.4 97.3 25.1
PLCST 0.95 1.0 133.4 1.1

regarding the mel spectrogram and phase map having the same
channel number 4, we concat them together before sending them
into the proposed network. Due to the dimensions of the phase map
and the mel spectrogram being 513 × 4 and 64 × 4, respectively,
the dimension of the feature embeddings is 577× 4.

The training data are cut into chunks with a fixed length of 1
ms, which is the same as the annotation. Adam optimizer is used to
train the model, and a tri-stage rate scheduler is used to optimize the
learning rate during training. To reach the deadline of the submis-
sion, the learning rate is set bigger than usual, starting at 0.05. The
model is trained on the development dataset only with the specific
splits ratio defined by the challenge. And the batch size is set as 128
for accelerating the training. The result of the current model will be
influenced by these facts. However, we will improve this when we
complete the paper for the workshop.

3. RESULTS ON THE DEVELOPMENT DATASET

We evaluate our proposed method on the development dataset of
STARSS2023. Table 3 shows the experimental results of the pro-
posed method for the development test dataset. We list out the ex-
periment’s result of the proposed method and baselines with dif-
ferent input features. Noted that we put both the published and
we trained results of the baseline system in this table, which are
distinguished by (p) and (w). The mACCDOA in the table means
multi-ACCDOA features.

4. CONCLUSION, LIMITATION, AND FUTURE WORK

This report proposes a network named PLCST to solve the SELD
task in the DCASE2023 challenge. However, we can see that our
proposed method’s current result is not competitive enough with
the most distinct methods in this area. This is because we didn’t
provide a robust model by training with enough data and suitable
parameter settings due to time being quite limited. Therefore, in the
next step, we will generate more data for training, amend some net-
work architecture, adjust the loss function, and find the best match
parameters setting. Finally, the improved works will be submitted
for the workshop.
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