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ABSTRACT 

In this report, we present the sound event detection system for 

Detection and Classification of Acoustic Scenes and Events 

(DCASE) 2023 Challenge Task 4: Sound Event Detection with 

Weak Labels and Synthetic Soundscapes. For Task 4A, we de-

signed a SED system based on the Mean Teacher [1] architecture 

to detect event information and start and stop times in audio se-

quences, using semi supervised learning to address the lack of la-

beled data in the DCASE 2023 Challenge task. In addition, we use 

pre-trained models to leverage external data information to further 

improve the stability of the system. We finally integrated multiple 

systems with the best PSDS1 of 0.525 and PSDS2 of 0.783. 

Index Terms—Sound event detection, Semi-supervised learning, 

Mean teacher, Pretrained model  

1. INTRODUCTION 

The purpose of sound event detection is to identify each sound 

event category and to assist people or other intelligent devices to 

make adaptive responses by automatically analyzing the event 

type and timestamp information contained in the sound to further 

facilitate people's lives and improve the efficiency of production. 

Sound event detection has in-depth research significance in smart 

homes [2], health monitoring systems [3], multimedia retrieval [4], 

smart city planning [5], and automatic audio monitoring [6], etc. 

The CRNN model structure has achieved good performance in 

SED systems, which fully retains the advantages of CNN and 

RNN, not only extracting the salient features on the feature map 

through convolutional operations This structure fully retains the 

advantages of CNN and RNN, not only extracts the significant fea-

ture information on the feature map by convolutional operation, 

but also models the temporal dimension by capturing a larger 

range of contextual information through RNN, and finally com-

bines the fully connected network layer to integrate the feature in-

formation to obtain the final output of the model. CRNNs have 

also become a common network framework for sound event de-

tection tasks in recent years, and have shown good detection re-

sults in practical applications. 

                                                           

 

2. PROPOSED METHODS 

This chapter is divided into four sections to introduce the SED 

system. Section 2.1 introduces the preprocessing method for au-

dio features; Section 2.2 details the overall architecture of the 

model; Section 2.3 describes the data enhancement methods used 

in the SED system and the specific parameter settings; Section 2.4 

introduces the pre-training model and the fusion method used in 

this paper. 

2.1 Pre-processing 

We resampled each audio clip to a single-channel audio waveform 

with a sampling rate of 16kHz. The audio waveform was then win-

dowed with a Hamming window of length 2048 points and a step 

size of 256 points, and transformed into a spectrogram using 

Short-Time Fourier Transform (STFT). To better represent the fre-

quency energy, we converted the raw audio into a logarithmic mel-

spectrogram using 128 logarithmic mel filters. The resulting mel-

spectrogram had a size of 626 × 128. 

2.2 Network architecture 

The three proposed model structures all follow the CRNN archi-

tecture. 

Model 1: The CNN part consists of three stem blocks and four re-

sidual convolutional blocks. The stem blocks include two convo-

lutional layers with a kernel size of 3x3 and a stride of 1x1, fol-

lowed by BN layer, GLU, Dropout, and pooling layer. The residual 

convolutional blocks are inspired by ResNet [7], where each resid-

ual block consists of two convolutional layers followed by BN 

layer and ReLU, and a shortcut connection with a 3x3 convolu-

tional kernel. 

Model 2: We replaced the stem blocks of Model 1 with a multi-

scale convolutional block, which includes two layers of multi-

scale convolutional layers. The first layer has multi-scale kernels 

of size [3,3] and [5,5], and the second layer has multi-scale kernels 

of size [3,3] and [5,3]. A shortcut connection is added to the multi-
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scale convolutional block. Additionally, we extracted channel at-

tention weight information from the preprocessed feature maps, 

assigning different attention to each channel, and combined the 

features of each channel using a 1x1 convolutional layer. 

Model 3: Inspired by the Inception model, we redesigned the size 

of the multi-scale convolutional kernels and expanded the multi-

scale branches to four.  

We applied the CA [8] attention mechanism to the output of all 

modules except the first layer, which captures cross-channel, di-

rection-sensitive, and position-sensitive information, helping our 

model to more accurately locate and recognize audio events of in-

terest. The RNN part consists of 2 layers of 128 bidirectional gated 

recurrent units. Dense blocks and attention blocks are added to 

predict strong and weak labels, respectively. Furthermore, we de-

signed a probability-based weighted pooling function, using the 

frame-level prediction probability as the aggregation weight for 

weak labels. This method does not introduce any training parame-

ters and has a strong interpretability.  

2.3 Data Augmentation 

During the training process, data augmentation strategies includ-

ing mixup [9], frameshift [10], and FilterAugment [11] were em-

ployed. Mixup randomly selects two samples-label pairs to gener-

ate new data for improving model generalization. Frameshift 

moves features and labels along the time axis, and FilterAugment 

applies random weights to different frequency bands of the Mel 

spectrogram by randomly dividing the frequency range into sev-

eral sub-bands, which helps train SED models to recognize time-

frequency patterns from a wider frequency range. The hyperpa-

rameter settings used in this work are as follows: for 

mixup the α = β = 0.2, for the FilterAugment with step type, the 

dB range is -4.5~6, the number of bands is 2~5, and the minimum 

bandwidth is 4. 

2.4 Pretrained Model 

The introduction of pre-trained models can greatly improve system 

performance. The BEATs[12] model achieved state-of-the-art 

scores in the Audioset classification task. In this system, we fused 

the frame-level embedding with the CRNN model. Since the se-

quence length of the extracted frame-level features is different 

from that of the CNN features, adaptive average pooling is used to 

unify the sequence length. Finally, they are fed into an RNN + 

MLP classifier. 

3. EXPERIMENT 

3.1. Experimental Settings 

In the experiment, we used the dataset provided by the DCASE 

official. For the SED system, we set the number of filters for each 

layer to [16, 32, 64, 128, 128, 128, 128] and the pooling layer to 

[[2, 2], [2, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2]]. We trained the 

entire system for 200 epochs, using the Adam optimizer with 

α=0.001 and β=(0.9, 0.999), gradually increasing the learning rate 

in the first 50 epochs, and setting the batch size to 48. 

3.2. Evaluation metric 

In order to evaluate the performance of the SED system in differ-

ent scenarios, we set the PSDS1 and PSDS2 parameters. In PSDS1, 

the system needs to respond quickly to event detection, so the time 

localization of sound events is important. In PSDS2, the system 

must avoid confusion between classes, but the requirement for 

event response time is less strict than PSDS1, for more details 

please refer to [12]. 

3.3. Experimental results 

We evaluated the impact of data enhancement strategies, pre-

trained models, and model integration on the system. The best 

PSDS1 and PSDS2 scores reached 0.525 and 0.783. The experi-

mental results are shown in Table 1. 

Table 1: Results of different Systems 

4. CONCLUSION 

This technical report introduces the methods used in the 2023 

DCASE Task4A challenge. We designed three deep learning mod-

els for the sound event detection task, and all models used data 

augmentation methods to improve the model's generalization abil-

ity. We added a multi-scale module to the residual convolutional 

neural network to extract audio event features of different scales, 

and the use of the CA attention mechanism can accurately locate 

and identify the target audio events. In addition, we further im-

proved the model performance by adding a pre-trained model. The 

final model obtained the best PSDS1 of 0.525 and PSDS2 of 0.783 

on the validation set. 

5. REFERENCES 

[1] A. Tarvainen and H. Valpola, “Mean teachers are better role 

models: Weight-averaged consistency targets improve semi-

supervised deep learning results,” in Proceedings of the 31st 

International Conference on Neural Information Processing 

Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Asso-

ciates Inc., 2017, p. 1195–1204. 

[2] Debes C, Merentitis A, Sukhanov S, et al. Monitoring activ-

ities of daily living in smart homes: Understanding human 

behavior[J]. IEEE Signal Processing Magazine, 2016, 33(2): 

81-94. 

[3] Zigel Y, Litvak D, Gannot I. A method for automatic fall de-

tection of elderly people using  floor  vibrations  and  

sound—Proof  of  concept  on  human  mimicking  doll 

falls[J]. IEEE transactions on biomedical engineering, 2009, 

56(12): 2858-2867. 

[4] Wold E, Blum T, Keislar D, et al. Content-based classifica-

tion, search, and retrieval of audio[J]. IEEE multimedia, 

1996, 3(3): 27-36. 

[5] Bello J P, Silva C, Nov O, et al. SONYC: A system for the 

System Data 

Aug 

Pretrained 

model 

Ensemble PSDS1 PSDS2 

1 √   0.429 0.644 

2 √ √ √ 0.525 0.780 

3 √ √ √ 0.521 0.783 



Detection and Classification of Acoustic Scenes and Events 2023  Challenge 

  

monitoring, analysis and mitigation of urban noise pollu-

tion[J]. ar Xiv, preprint ar Xiv:1805.00889, 2018. 

[6] Radhakrishnan  R,  Divakaran A,  Smaragdis A. Audio  anal-

ysis  for  surveillance applications[C]// IEEE Workshop on 

Applications of Signal Processing to Audio and Acoustics, 

2005: 158-161. 

[7] He K , Zhang X , Ren S , et al. Deep Residual Learning for 

Image Recognition[J]. IEEE, 2016. 

[8] Hou Q, Zhou D , Feng J . Coordinate Attention for Efficient 

Mobile Network Design[J]. 2021. 

[9] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, 

“mixup: Beyond empirical risk minimization,” arXiv pre-

print arXiv:1710.09412, 2017. 

[10] L. Delphin-Poulat and C. Plapous, “Mean teacher with data 

augmentation for dcase 2019 task 4 technical report,” 2019. 

[11] H. Nam, B.-Y. Ko, G.-T. Lee, S.-H. Kim, W.-H. Jung, S.-M. 

Choi, and Y.-H. Park, “Heavily augmented sound event de-

tection utilizing weak predictions,” arXiv preprint 

arXiv:2107.03649, 2021. 

[12] https://dcase.community/challenge2023

 


