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ABSTRACT

In this technical reprot, we describe our submission system for
DCASE2023 Task5: Few-shot Bioacoustic Event Detection. We
propose a metric learning method to construct a novel prototypical
network, based on adaptive segment-level learning and Squeeze-
and-Excitation (SE) blocks. We make better utilization of the nega-
tive data, which can be used to construct the loss function and pro-
vide much more semantic information. Most importantly, we pro-
pose to use SE blocks to adaptively recalibrate channel-wise feature
response, by explicitly modeling interdependencies between chan-
nels, which improves f-measure to 63.94 %. For the input feature,
we use combination of per-channel energy normalization (PCEN)
and delta mel-frequency cepstral coefficients (∆MFCC). Our sys-
tem performs better than the baseline given by the officials, on the
DCASE task 5 validation set. Our final score reaches an f-measure
of 65.49 %, outperforming the baseline performance by 30.18 %.

Index Terms— DCASE, few-shot bioacoustic event detection,
prototypical network, adaptive segment-level learning, data aug-
mentation

1. INTRODUCTION

Few-shot classification [1, 2, 3, 4] is a task in which a classifier must
be adapted to accommodate new classes not seen in training, when
given only a few examples. Using a naive approach, such as train-
ing the model on a few data, would lead to severe overfitting, which
causes a bad generalization[5]. Sound event detection [6] is a task
that needs to locate the onset and offset of certain sound classes. In
order to solve the few data problem in the audio field, Wang et al.
combine the idea of few-shot learning with sound event detection,
which can detect a new sound event with only a few labeled sam-
ples. This makes it highly suitable for tasks where labeling the data
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may be costly to annotate, such as monitoring the animal population
through their vocalizations.

In the previous DCASE 2021 task 5, most of the participants
used a prototypical network[7]. Anderson et al. [8] proposed
to use the prototypical network combined with various data aug-
mentation methods, combining with per-channel energy normaliza-
tion (PCEN) feature. Yang et al. [9] proposed a transductive in-
ference method to maximize the mutual information between query
features and their label predictions. Tang et al. [10] proposed to use
embedding propagation and attention similarity approaches to im-
prove the model performance. Various data augmentation methods
are used in the system described in [11, 12].

In the DCASE 2022 task 5, Liu et al. [13] mentioned that in
the previous works, the negative segments in each audio file are
not fully used. So they proposed to use both positive segments and
negative segments to construct the system, which outperformed the
baseline by a large margin. Our system is based on their main
idea, and we propose a new metric learning architecture, called
SE-prototypical network, which can better utilize the informa-
tion from different channels to improve the model performance and
model generalization.

Metric learning [14, 15, 16] is a machine learning method
aimed at learning a distance metric function, so that similar sam-
ples are closer and un-similar samples are farther under this metric.
Metric learning is commonly used for tasks such as classification,
clustering, and retrieval, which can improve model performance by
learning a better distance. In the previous task 5 challenges, most
of the studies [8, 10, 9] only use the positively labeled data to make
the features closer. However, the positive data also need to be dis-
tinguishable from the negative data within the same audio file. We
utilize better both positive segments and negative segments to solve
the problem.

Because no external dataset is allowed unless permission is
granted, we do not use the AudioSet [17]. We also have stud-
ied different audio features to choose the best feature for this task,
including log-mel spectrogram (MEL), PCEN[18], mel-frequency
cepstral coefficients (MFCC), and delta-MFCC (∆MFCC). Finally,
we tend to use the combination proposed by Liu et al. [13], using
PCEN and delta-MFCC together as our input features.

This technical report is organized as follows. Section 2 pro-
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vides an overview of our system. Section 3 introduces the methods
we proposed and used to improve our system. Section 4 provides
the experiments and results. Section 5 summarizes this work and
provides a conclusion.

2. SYSTEM OVERVIEW

2.1. Dataset

Challenge official dataset DCASE 2023 task 5 dataset contains a
development set, which includes a training set and an validation set,
and an evaluation set. The training and validation sets are both fully
labeled. The evaluation set is provided only with the labels of the
first five positive events.

We use the training set and the validation set from the develop-
ment set provided by DCASE for training. For the validation set,
we only use the first five annotations for training, and the remaining
part is used to verify the training effect.
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Figure 1: Basic Block

2.2. Model Architecture

The original baseline system contains an encoder, which made up
of 4 ConvBlocks, each of which contains a Conv2d layer, a Batch-
Norm2d layer, a ReLU function, and a Maxpool2d layer. The newly
revised baseline system is constructed on the basis of ResNet frame-
work, which also contains 4 Basic Blocks, and uses a downsampled
feature to act as a residual feature. The architecture of Basic Block
is shown in Figure 1. For our novel prototypical network archi-
tecture, we have made some changes on the original framework.

We introduce the Squeeze-and-Excitation mechanism, which will
be discussed later in Section 3. The whole network architecture is
shown Figure 2. We use several SE blocks to enhance the important
feature in order to get better performance. The more details about
the architecture will be introduced in Section 4.
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Figure 2: Network Architecture

2.3. Evaluation metric

We use the event-based f-measure as the evaluation metric for all the
experiments. Meanwhile, we calculate and record the precision and
recall for each epoch. To determine the optimal choice for threshold
of the evaluation set in 2023, we calculate the f-measure of the Full
version validation set in 2022.

3. METHOD

3.1. Feature extraction

As described above, delta MFCC and PCEN are mixed as feature in
our system.

Delta MFCC Perform cepstrum analysis (taking logarithms
and performing DCT transformation) on the Mel-spectrogram to
obtain the Mel-scale Frequency Cepstral Coefficients (MFCC).
MFCC is derive and mixed with the original MFCC to obtain delta
MFCC.

PCEN Per channel energy normalization introduces a normal-
ization mechanism for each channel based on FFT or Fbank features
to suppress the impact of input signal amplitude changes on recog-
nition results

3.2. Prototype network

A prototypical network[7] is a type of neural network that uses a
similarity-based approach to classify input data. The basic idea be-
hind it is to learn a prototype for each class in the training data. A
prototype is a representative example of a class that captures the
essential features of the class.

To classify a new input, the prototypical network computes the
similarity between the input and each prototype, The similarity is
typically measured using a distance metric, such as Euclidean dis-
tance or cosine similarity. The input is then classified as belonging
to the class with the closest prototype.

During training, the prototypical network is given a set of la-
beled training data. For each class, the networks learns a prototype
by computing the mean of all the training examples in that class. It
Uses a distance metric to measure how similar the input is to the
prototype. Then the input is classified as belonging to the class
with the closest prototype, which is typically done using a nearest
neighbor algorithm. The prototypical network can be trained us-
ing gradient descent or other optimization algorithms to minimize
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a loss function that measures the distance between the input and its
assigned prototype.

From the official baseline system, we find that it uses the av-
erage embedding of the entire audio set as the negative prototype,
because of no negative annotation given. However, it is based on
the assumption of the positive event is sparse. In most of the eval-
uation files, the positive events are very dense. Building a negative
prototype in this way can lead to a degraded result.

In order to better construct the positive prototype and the nega-
tive prototype, we propose two assumptions:

1. The positive events do not vary a lot. So the positive proto-
type is calculated by simply averaging the embeddings of the
labeled positive segments.

2. The negative prototype are built by the negative sample
searching algorithm, proposed by Liu et al. [13]. The al-
gorithm includes a frequency bins weighting step and a fre-
quency pattern matching step.

• The frequency bins weighing operation is proposed to
help us find the negative event more accurately, by get-
ting the frequency band that is most likely to contain the
target sound event.

• The frequency pattern matching aims to locate possible
negative samples, by using a threshold calculated using
the minimum SISNR [19] value.
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Figure 3: SE block

3.3. SE Block

Squeeze-and-Excitation block [20], as shown in Figure 3, uses an
adaptive mechanism to assign different weights to different chan-
nels of the feature map, enhancing important features and weaken-
ing less important ones. Assuming that the input feature map of
the squeezing excitation block is X ∈ RC×H×W , the squeezing
excitation block first uses a global average pooling to compress the
feature map into a channel descriptor z of size C × 1 × 1.Then,
this channel descriptor is predicted for the importance of each
channel through two fully connected layers. Specifically Repre-
sented as Weight = σ (W2δ (W1z)), where δ represents the
ReLU function,σ represents the Sigmoid function, W1 ∈ R

C
r
×C ,

W2 ∈ RC×C
r , Weight ∈ RC×1×1. Finally, the obtained weight is

excited onto the corresponding channel of the feature map, obtain-
ing U = X ×Weight, U ∈ RC×H×W . The working mechanism
is shown in Figure 4.
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Figure 4: Squeeze-and-Excitation mechanism

3.4. Post-processing

For each audio file to be predicted, we only retain the pre-
dicted results that meet Starttime − Endtime >= threshold ∗
min duration,where starttime is the start time of the detec-
tion event, endtime is the end time of the detection event,
min duration is the minimum duration of the first five given posi-
tive events in each audio file that needs to be detected, and threshold
∈ [0, 1] set by as. We calculated the f-measure of the validation set
under different thresholds and selected the threshold with the best
performance as our submission option.

4. EXPERIMENTS AND RESULTS

Among various acoustic features, such as log-MEL, PCEN, MFCC,
∆MFCC and so on, we finally choose delta MFCC and PCEN as
our input features because of their optimal performance.

During the training process, we calculate the f-measures of
each epoch and select the checkpoint corresponding to the largest f-
measure as the best checkpoint to predict the full version validation
set for 2022 and evaluation set for 2023 under different thresholds.
We choose the threshold corresponding to the highest f-measures
as our submission option. At the same time, we will also use SE
block as one of the submission options. Above all, we obtained
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Table 1: Model Results. The F-measure (%) with different setting.
SMP stands for splitting, merging, and padding.

No. of SE SMP Threshold F-measure Submission
None False 0.1 65.49 System 1
None False 0.05 63.06 System 2

1 after layer 3 False 0.3 63.94 System 3
1 after layer 1 False 0.15 62.14 System 4

4 False 0.15 51.43 #

None True 0.1 39.41 #

1 after layer 2 False 0.15 55.43 #

the systems we submitted, and the specific performance is shown
in Table1, and select the four systems with the highest f-measure to
submit.

5. CONCLUSION

We have improved the prototype network on the basis of the base-
line system, incorporating SE blocks into the model, and post-
processing the obtained prediction results. Through experimental
results, it can be found that our system performance has been greatly
improved compared to baseline, with the highest f-measure reach-
ing 65.491 on the validation set.
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