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ABSTRACT

This technical report is the system description of the X-Lance team
submission to the DCASE 2023 task 4b challenge: sound event de-
tection with soft labels. Our submissions focus on incorporating in-
formative audio representations from self-supervised learning. The
embeddings from different layers of the pre-trained models are ag-
gregated as the input of our model. Since the occurrence of sound
events in different scenes is imbalanced, for each scene we train our
models using all the audio files. Finally, models of different archi-
tectures trained under different scenes are ensembled with learned
weights.

Index Terms— Sound event detection, Pre-training model,
Self-supervised learning, Convolutional recurrent neural networks

1. INTRODUCTION

This paper proposes our system for the DCASE 2023 task4b chal-
lenge, which is concerned with training sound event detection
(SED) systems with soft labels. The goal of SED is to automatically
identify and localize specific sound events within an audio record-
ing [1]. Popular SED architectures include convolutional neu-
ral networks (CNN) [2], convolutional recurrent neural networks
(CRNN) [3] and Transformers [4].

Soft labels refer to a type of annotation in which a sound event
is labeled with probabilities of the set of all possible sound event
classes, rather than with a hard label indicating a single class. Soft
labels are used in sound event detection to indicate the certainty
of human annotators. They may be useful to train SED systems
since there is uncertainty or ambiguity in the classification of sound
events, especially for background sounds. In previous versions of
the DCASE task 4 challenge, the development dataset is composed
of either weakly labeled or unlabeled real data and strongly labeled
simulated data. This subtask aims to explore the impact of intro-
ducing soft labels in the training process. However, the dataset size
is small and we find that the dataset is highly imbalanced regarding
sound events. The distribution in different scenes (see Section 3)
is uneven. For example, “metro approaching” and “metro leaving”
only appears in the scene “metro station”. To enable more sam-
ples to be used in training, we train different models under different
scenes. For each scene, all data is used for training so even the
most infrequent classes contain a moderate number of training sam-
ples. Moreover, the occurrence numbers of different events are also
imbalanced: there are 5703 “people talking” segments annotated

with a prob of over 0.5 while the number for “children voices” is
only 183. Therefore, we mainly explore transferring the knowledge
learned by self-supervised learning on large-scale datasets to this
task. We train two models based on features extracted from pre-
trained models and ensemble them to make final predictions.

The report is structured as follows. Section 2 describes our core
system design including feature engineering and model architec-
tures. Next, Section 3 introduces the experimental setup and our
submission details. Finally, Section 4 concludes our work.

2. SYSTEM

2.1. Pre-trained Audio Representations

In this challenge, we incorporate BEATs [5] to extract informative
representations from the input audio. The BEATs model utilizes
a self-supervised learning paradigm to predict discrete units gener-
ated by an acoustic tokenizer, which presents superior performance
on various audio-related downstream tasks. Since the BEATs model
is not included in the external model resources, we re-implement the
BEATs model and train it on AudioSet [6]. Next, we use the BEATs
model to generate the audio features from the original waveform
given by this challenge. In this way, we can take advantage of a
large amount of unlabeled audio data and obtain general audio fea-
tures. BEATs first converts an audio clip into the mel-spectrogram
with a stride of 10ms and a dimension of 128, and then divides it
into patch-level embedding sequences. The output of the BEATs
model is 768-dimensional features with a stride of 20ms. We con-
sider two types of pre-trained features:

Clip-level Pre-trained Features. Average pooling is used on
the whole sequence to obtain the clip-level pre-trained feature. We
concatenate this global feature with each frame-level FBank feature
and feed them into subsequent networks. The features are used in
the CRNN architecture mentioned in Section 2.2, and for Submis-
sion 2 and Submission 4 mentioned in Section 3.4.

Frame-Level Pre-trained Features. The features generated
by the BEATs model with a stride of 20ms are directly used for the
LSTM architecture mentioned in Section 2.2, and for Submission 3
and Submission 4 mentioned in Section 3.4.

Since BEATs is a multi-layer transformer architecture, all the
above features come from the weighted average of the multi-layer
transformer outputs.



Detection and Classification of Acoustic Scenes and Events 2023 Challenge

2.2. SED Model

Two types of architectures are used in our systems.
CRNN architecture. The models of the CRNN architecture

are a slight modification on the challenge baseline. The baseline
model is a CRNN with a 3-layer CNN and a single-layer bidirec-
tional gated recurrent unit (GRU) network. Clip-level BEATs em-
beddings from each layer are aggregated to obtain a single clip-level
embedding. The aggregation weights are learned during training.
Then the embedding is concatenated with the feature after convo-
lution blocks. Finally, the GRU predicts the probabilities of each
event.

LSTM architecture. The models of the LSTM architecture di-
rectly use frame-level BEATs embeddings as the only input. Simi-
larly, embeddings from different layers are aggregated using learned
weights. Then a single-layer bidirectional long short-term memory
(LSTM) network is used.

2.3. Ensembling

We use the stacking strategy to ensemble the models. We concate-
nate the probabilities output by different models, and then train a
fully connected layer to predict the ground truth soft label. We use
the mean of different model probabilities to initialize the fully con-
nected layers and set the learning rate to a small number. These
ensure that the stacking model will not learn trivial weights.

3. EXPERIMENTAL SETUP

3.1. Dataset

In this challenge, MAESTRO real [7] is used as the development
set. There are 49 audio recordings in total, with a duration of 3.16
hours. They are recorded in 5 different scenes: cafe restaurant, city
center, grocery store, metro station and residential area. Multiple
annotators are instructed to estimate soft labels with a time resolu-
tion of 1s. Since the dataset size is very small, 5-fold cross valida-
tion is used in the baseline setting. To use more data for training, we
use both the original training and validation sets as the training set
and the original test set as the validation set. After training, models
from all folds are ensembled.

3.2. Training Hyper-parameters

For the RCNN model, we use the same setting as the baseline. 64-
dimensional log mel-spectrogram with a window size of 0.4s and a
window shift of 0.2s is extracted from the audio as the input fea-
ture. For the LSTM model, the 768-dimensional BEATs with a
window shift of 0.02s features are fed into the network with a 128-
dimensional hidden layer. For both models, original audio record-
ings are split into segments of 40s during training and the batch size
is set to 32. We use average pooling for downsampling and the out-
put time resolution is 1s. Models are trained with a learning rate of
0.001 for at most 100 epochs and an early stop patience of 10 using
the Adam optimizer. The learning rate will be set to its 1

10
if the

validation loss does not decrease for 5 epochs.

3.3. Evaluation Metrics

The challenge uses macro-average segment-F1 (F1MO) score [8]
under the optimum threshold as evaluation metrics. Segment-level
F1 evaluates the accuracy of model predictions in each 1s segment.

A segment will be considered active for an event if any frame in
this segment receives a high score. Therefore, our models use a
large time resolution (0.2s/1s) to reduce false alarms. The optimum
threshold will be searched for each class on the evaluation data us-
ing the toolkit [9] so the magnitude of estimated probabilities is not
necessarily close to 1 or 0.

3.4. Submissions

Here are details of our submissions:
Submission 1: The submission without using external data. We

use a similar setting as the baseline. It achieves an F1MO of 55.79.
Submission 2: The CRNN model architecture. Models trained

on the 5 folds are averaged. It achieves an F1MO of 59.88.
Submission 3: The LSTM model architecture. Models trained

on the 5 folds are averaged. It achieves an F1MO of 57.25.
Submission 4: Different models are trained for each scene. In

each scene, all files are split into several folds. Finally, 47 models
in total are ensembled using learned weights with tricks mentioned
in 2.3. It achieves an F1MO of 69.85.

It should be noted that since we use all data for training and
validation, our reported results are not comparable to results under
the official development-test setup.

4. CONCLUSION

This paper summarizes our submission to the DCASE2023 task4b
challenge. Our approach is based on pre-trained BEATs features.
The pre-trained features are incorporated with the model in either
clip-level or frame-level ways. To use more training data for sound
events with few samples, we train separate models under different
scenes. Finally, all models are ensembled by learnable weights.
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