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ABSTRACT

This technical report describes our submission for task 1 low-
complexity acoustic scene classification of the DCASE 2023 chal-
lenge. To enhance the generalization to unseen devices, the re-
assembled 10-second audio is convolved with a microphone im-
pulse response randomly selected from the Microphone Impulse
Response Project library before fed into models. Then a ResNet38
teacher model pre-trained on AudioSet and three low-complexity
BC-Res2Net student models are involved in Deep Mutual Learning
to further improve the performance of the teacher model, and obtain
a well-initialized student model as well. Next, we use Knowledge
Distillation fine-tuning to teach the student model to learn from
the well-performing teacher model while maintaining the predic-
tive performance of the teacher model. Finally, the student model is
quantized by Post-Training Static Quantization to implement infer-
ence computations using 8-bit integers.

Index Terms— Acoustic scene classification, impulse re-
sponse, deep mutual learning, knowledge distillation fine-tuning

1. INTRODUCTION

Low-complexity acoustic scene classification (ASC) is a regular
task in the Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge of 2023[1], which aims to classify a test
recording into one of ten predefined acoustic scene categories with
limited computational and memory allowance. Moreover, this task
requires to achieve generalization across various devices. The low-
complexity and generalization requirements of the task are charac-
terized by three key points:

• The memory for model parameters must be capped at 128K,
regardless of the parameter type utilized. This constraint en-
ables participants to make an efficient trade-off between model
memory and parameter type.

• The computational consumption for a single inference must be
limited to 30 million multiplicative accumulation operations
(MMACs).

• The audio data used in the task was recorded by a variety of de-
vices. Synthetic data for several mobile devices was also gen-
erated based on the recorded audio. Consequently, in addition
to test the generalization capabilities of the model to different
cities and unseen audio, this challenge also aims to assess how
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well the model can adapt to different and unseen recording de-
vices.

In this report, an effective data processing method and a model
training framework constituted by deep mutual learning (DML) and
knowledge distillation (KD) fine-tuning are presented to address the
low-complexity and device robust ASC problem.

2. DATA PREPROCESSING AND AUGMENTATION

2.1. Microphone Impulse Response

The dataset utilized for this task is the TAU Urban Acoustic Scenes
2022 Mobile development dataset[2]. It is derived from the TAU Ur-
ban Acoustic Scenes 2020 Mobile development dataset by cropping
the original 10-second audio files into 1-second clips, and the sam-
pling rate was 44.1 kHz. We borrowed the CP-JKU scheme [3] and
reassembled all the training audio into 10-second segments accord-
ing to the segment identifiers. Then the audio was downsampled to
32 kHz.

It is known that enhancing the diversity of training data can
efficiently promote the generalization capability of the model to
various recording devices. The challenge organizers created syn-
thetic data for 11 mobile devices based on the original recordings.
Sonowal et al. [4] found that using microphone impulse responses
(IRs) from Microphone Impulse Response Project (MicIRP) library
[5] to augment the training data of the DCASE 2020 Task 1a set
could bring performance improvements. Therefore, we randomly
simulate ‘new’ recording devices during training by convolving the
reassembled audio signals with a diverse set of microphone IRs.
Suppose that Xir is a microphone IR randomly selected from Mi-
cIRP library whose download link is provided by the challenge or-
ganizers. Then an original audio signal X is convolved with Xir to
obtain an unknown simulated device audio output Xun, which can
be formulated as,

Xun = X ∗Xir, (1)

where ∗ stands for convolution operator. Furthermore, to compress
the waveform of Xun and control the difference in amplitude range
of the audio before and after convolution, the following dynamic
range compression is employed,

xdiff ≜ max(X)−min(X),

xdiff
un ≜ max(Xun)−min(Xun),

X̂un = Xun · x
diff

xdiff
un

.

(2)
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We use 68 IRs of vintage microphones in total, which means
synthetic audio data that recorded by 68 ‘new’ devices is included in
the training data. This operation makes the model ignore the char-
acteristics of the recording devices and pay more attention to the
classification information of the audio, so as to effectively reduce
the dependence of the model on specific recoding devices, while
maintaining the validity of model to original audio. The convolu-
tion with IRs described in (1) and (2) is applied with a probability
of 0.5 to training dataset, so as to ensure that both the original audio
and the simulated audio are fed into the model during training.

After convolution, each 10-second recording was randomly
cropped into a 1-second snippet and fed to the model in a single
epoch. That is to say, only one-tenth of the available data can be
seen by the model, which can increase the diversity of the training
data to a certain extent as well.

2.2. Data augmentation

On the basis of audio reassembling and convolution with IRs, two
kinds of data augmentation techniques are applied to the training
data sequentially.

The first one includes time shifting and time-frequency mask-
ing operations. We randomly shift an audio clip by a time interval
shorter than 1 second forward. Signal values beyond the original
time range on the right side of axis are used to fill in the area on the
left side. To extract temporal and spectral features from the audio
data, we apply short-time Fourier transform (STFT) to the shifted
audio using a Hanning window of size 2048 and a hop size of 1024
samples for student model, and a Hanning window of size 800 and
a hop size of 320 samples for teacher model. Then mel filter banks
are applied with 256 mel bins for both student and teacher models,
followed by a logarithmic operation to obtain the log mel spectro-
grams of the audio. Finally, we apply the time-frequency masking
to the log mel spectrograms, and the maximum size of each masking
band is set as 8 for the time domain and 40 for the frequency do-
main, respectively. The application probability of both time shifting
and time-frequency masking is 0.7.

The second kind of data augmentation techniques includes
mixup [6] and mixstyle[7]. We compare the effects of mixup and
mixstyle in improving the model performance. The weight param-
eters of both mixup and mixstyle are chosen as α = 0.3, and their
application probabilities are 0.7 and 0.6, respectively. Experimental
results show that mixstyle outperforms mixup, thus for both teacher
model and student model, we apply mixstyle to the training data.

3. MODEL TRAINING FRAMEWORK USING DML AND
KD FINE-TUNING

A novel framework that combines DML with KD fine-tuning is pro-
posed for model training. Three low-complexity student models
and a pre-trained teacher model are employed. The goal of DML
is to further improve the performance of teacher model and obtain
a well-initialized student model. Then we employ KD fine-tuning
to transfer the knowledge learned by the well-performing teacher
model to the low-complexity student model. This process aims to
improve the classification performance of the student model.

3.1. Deep Mutual Learning

DML trains two or more networks which are denoted as Model =
{model1, · · · ,modelN} simultaneously. In the proposed model
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Ŷ 1
t
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Ŷ 4
t

CE L1
label + L1

dml

KL

KL

KL KL
(
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Figure 1: Diagram of DML training. It includes three BC-Res2Net
student models and a pre-trained ResNet38 teacher model. CE⃝ de-
notes the computation of cross-entropy. Only the calculation pro-
cess of total loss for the model BC-Res2Net is displayed.

training framework, the number of networks N = 4. At each it-
eration, every network learns from the other networks. Figure 1
illustrates the schematic diagram of DML training. Note that for
convenience, Figure 1 only displays how model1, which is denoted
as Init BC-Res2Net in this figure, learns from other models. Specif-
ically, each network outputs its own probability distribution and
passes the distribution as a soft label to the other networks. Then
the other networks update their losses and parameters on the basis
of both the soft and hard labels. The soft label for each model output
is calculated as

ŷn
m = log

(
znm/t∑M
j=1 z

n
j /t

)
, m = 1, · · · ,M,

Ŷ n
t = [ŷn

1 , · · · , ŷn
M ] , n = 1, · · · , N,

(3)

where znm is the logits of the nth model output on the mth category,
and M is the total number of categories. t denotes the temperature
and is employed to control the degree of smoothing of the soft la-
bels. ŷn

m represents the predicted soft probability of the nth model
on the mth category, and Ŷ n

t are the soft labels of the nth model.
For the nth model, the hard label loss Ln

label is obtained by
cross-entropy, and the soft label loss is calculated by Kullback-
Leibler (KL) divergence as

Ln
soft =

1

N − 1

∑
1≤ l≤N

l ̸=n

KL
(
Ŷ n
t ||Ŷ l

t

)
, n = 1, · · · , N. (4)

Finally, the total loss of the nth model in the DML process is the
weighted sum of its hard label loss and soft label loss, i.e.,

Ln
dml = Ln

label + λdmlL
n
soft, (5)

where λdml is the weight of the soft label loss.
It is worth noting that DML does not require additional knowl-

edge source and it extracts knowledge directly through interactions
between networks. It can effectively improve the performances of
all networks involved in learning. More importantly, the interac-
tions among the output soft labels of the models enable DML to
avoid overfitting and enhance the robustness of all the models.

Three student models and one pre-trained teacher model are
employed for DML training. After the DML process, a well-
performing teacher model and a properly initialized student model
are obtained for the following KD fine-tuning.



Detection and Classification of Acoustic Scenes and Events 2023 Challenge

3.2. Student Model

The student model employed in the proposed model training frame-
work is based on the Broadcast Residual Network ( BC-ResNet)[8].
BC-ResNet was a deep neural network developed for efficient key-
word detection, and it utilized both residual learning and broadcast
mechanism. In the employed student model, the ResNet part in BC-
ResNet is replaced by Res2Net[9], and the new model is referred
to as BC-Res2Net[10]. Res2Net can extract features within differ-
ent receptive fields and in multiple scales at a lower computational
cost by adding small blocks of residuals to the original residual cell
structure. Besides, a simple but yet effective module called Resid-
ual Normalization (ResNorm) is added to BC-Res2Net to reduce
the reliance on various devices[11].

Three models are utilized as student models in DML, including
a BC-Res2Net with the number of channels C = 24, a wider BC-
Res2Net with C = 80, which is denoted as BC-Res2Net wide, and
a deeper BC-Res2Net named BC-Res2Net deep, in which C = 24,
and the number of BC-Res2Block and ResNorm within each mod-
ule is doubled. The purpose of adding BC-Res2Net wide and BC-
Res2Net deep to the DML is to allow BC-Res2Net to learn some
information contained in deeper and wider networks, therefore to
compensate for the limitations due to its lack of width and depth.

Denoting the number of Mel bins, and the number of time steps
as F and T , Table 1 shows the overall architecture of BC-Res2Net
and the size of the output feature map in each block.

Table 1: Architecture of BC-Res2Net as the student model.

Block Output Size
input (1, F, T )

ResNorm
Conv2D (5×5) (2C,F/2, T/2)

BC-Res2Block × 1
ResNorm

MaxPool(2, 2)
(C,F/4, T/4)

BC-Res2Block × 1
ResNorm

MaxPool(2, 2)
(1.5C,F/8, T/8)

BC-Res2Block × 3
ResNorm (2C,F/8, T/8)

BC-Res2Block × 3
ResNorm (2.5C,F/8, T/8)

Conv2D (5×5), Group=2.5C
Conv2D (1×1)

Mean
(4C, 1, 1)

Conv2D (1×1) (10)

3.3. Teacher Model

We use ResNet38 trained by Kong et al. [12] on AudioSet [13] as
the pre-trained teacher model. To adapt ResNet38 to the ASC task,
we implement migration learning on it. ResNet38 is a deep audio
neural network trained with 1.9 million audio clips and an ontology
of 527 sound classes. Residual networks help ResNet38 to allevi-
ate the vanishing gradient problem that commonly encountered in
training very deep networks. The large number of sound classes can
provide a comprehensive representation of unique sounds. There-
fore, ResNet38 has demonstrated high accuracy rates in real-world
sound classification tasks.

3.4. Knowledge Distillation Fine-tuning

KD has been widely used in various fields as a model compression
tool. When training a student model, the probability distributions of
the teacher model’s predictions on the input audio samples, which
are also known as soft labels, are utilized as an additional target.
Therefore, KD allows the student model to imitate the output of the
teacher model as much as possible, leading to improved general-
ization capacity and, to some extent, increased fitting speed of the
student model.

We employ ResNet38 and BC-Res2Net trained by DML as the
teacher model and initialized student model for KD fine-tuning.
Soft labels and soft label loss are calculated in a similar way to
DML as expressed in (3) and (4). Denoting the soft label loss in
KD fine-tuning by Ldist, the total loss in KD can be calculated as

Lkd = Llabel + λkdLdist, (6)

where λkd is the weight of the soft label loss.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Training Setup

The learning rate during the experiments is fixed at 1e-4 for indi-
vidual training of the student and teacher models in the process of
DML training and KD fine-tuning. Adam optimizer is utilized, and
our experimental results indicate that the type of optimizer does not
have a significant impact on the outcomes.

In the Res2Net structure of the student model, we set the scale
size to be 4. During the DML training and KD fine-tuning, the
temperature t is both set to 3 to generate soft labels, ensuring that
the labels are smooth and not too much information is lost at the
same time. In the DML training, the weight of soft label loss is
set as λdml = 1. This is due to the fact that each student model
is trained from scratch, and the purpose of DML training is to pro-
mote the performance of the pre-trained ResNet38 teacher model.
Therefore, we do not want a model to put great influence on an-
other. However, in the KD fine-tuning, the weight of soft label loss
is set to be a large value λkd = 50 since we want the BC-Res2Net
student model to learn as much as possible from the representations
of the well-performing teacher model.

4.2. Results

Table 2 shows the accuracy performance of the student model BC-
Res2Net and the teacher model ResNet38 on the provided evalu-
ation set under different experimental settings. It is clear that the
training method that includes convolution with IRs, mixstyle, DML
training and KD fine-tuning performs the best.

Note that using DML followed by KD fine-tuning achieves bet-
ter performance than using either one alone. In particular, using
only KD performs almost the same to not using both of them. Ex-
perimental results reveal that using DML training enables the stu-
dent model to converge more quickly with improved performance
during KD fine-tuning. Conversely, using KD individually tends to
result in unstable student performance and makes the model sen-
sitive to the weight parameter λkd, sometimes leading to reduced
model performance. This highlights the necessity of DML train-
ing, and the combination of DML and KD fine-tuning provides a
fast and more effectively way to improve the performance of low-
complexity student model.
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Table 2: Accuracy performances of the student model and the teacher model under different training settings. Here, BC-Res2Net has a width
of C = 24. Conv IR indicates whether the input audio is convolved with IRs.

Model Conv IR Mixup Mixstyle DML KD Real
Devices

Seen
Devices

Unseen
Devices Overall

student
model

BC-Res2Net

% % % % % 63.71 48.17 36.90 49.59
! % % % % 66.99 55.73 45.45 56.05
% ! % % % 62.91 52.09 42.68 52.55
% % ! % % 65.40 55.34 47.05 55.93
! % ! % % 64.34 56.90 52.21 57.81
! % ! ! % 61.04 57.34 56.09 58.16
! % ! ! ! 65.28 59.53 54.66 59.82
! % ! % ! 63.26 57.88 52.41 57.85

teacher
model

ResNet38

% % % % - 70.30 52.28 44.61 55.73
! % % % - 74.07 61.14 58.24 64.48
% ! % % - 72.76 54.04 48.63 58.47
% % ! % - 74.15 61.04 56.81 64.00
! % ! % - 74.59 67.96 64.09 68.88
! % ! ! - 76.09 71.10 69.97 72.39

Table 3: Results of the four submitted models on the provided evaluation set.

submitted
model ID

Real Devices
Seen Simulated

Devices
Unseen Simulated

Devices
Complexity Overall

A B C S1 S2 S3 S4 S5 S6 Params MMAC Q ACC ACC Log
Loss

1 71.77 59.19 64.48 58.41 59.25 60.50 57.13 56.95 49.37 76,906 23.97 59.67 59.82 1.146
2 70.82 59.18 64.47 59.12 58.91 61.30 57.64 57.97 50.00 76,906 23.97 59.93 - -
3 66.84 55.22 60.77 56.86 56.26 58.61 58.27 57.83 50.43 76,906 23.97 57.89 58.15 1.158
4 66.55 55.53 60.70 57.39 56.06 58.52 59.33 57.45 50.48 76,906 23.97 58.00 - -

4.3. Quantification

In this task, we utilize Post-Training Static Quantization in PyTorch
[14] to convert all the parameters and computations involved in the
final low-complexity BC-Res2Net student model to int8 type. The
information loss is minimized during the quantization process while
the overall model performance is maintained. “fbgemm” is em-
ployed as the observer, and a portion of the training data is used
as calibration set.

5. SUBMISSIONS

The final results on the provided evaluation set are reported in Table
3. Listed below is a detailed description of the four submissions.

• submission 1: Models trained using the proposed training
framework of DML and KD fine-tuning and augmentation
techniques including Conv IR and mixstyle.

• submission 2: On the basis of submission 1, the test data is aug-
mented using the test time augmentation (TTA)[15] technique
by performing 10 random Conv IR on the test data and averag-
ing the fusion of the 10 inference results. The randomness of
convolution in TTA makes it impossible to ensure consistency
between the test data input to the model before and after quan-
tization during inference. Therefore, we only present quantized
result of submission 2 in Table 3.

• submission 3: The best student model obtained by using
DML training individually and augmentation methods includ-
ing Conv IR and mixstyle. This model performs best on un-
seen devices as shown in Table 2.

• submission 4: On the basis of submission 3, using TTA tech-
nique to augment the test data under the same setting with sub-
mission 2. Again, we only present the quantized result.

6. CONCLUSION

In this technical report, we describe the data processing method and
a model training framework to tackle with task 1 of the DCASE
2023 challenge. We augment the audio training dataset by sim-
ulating recoding devices in the form of convolving the reassem-
bled audio signals with randomly selected microphone IRs. Then a
model training framework composed of DML training and KD fine-
tuning is proposed to compress the knowledge of a well-performing
ResNet38 teacher model into a low-complexity BC-Res2Net stu-
dent model. Experimental results indicate that DML is of vital im-
portance for improving student model performance. Finally, 8-bit
quantization is applied to the student model.
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