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ABSTRACT

This technical report describes our submitted systems to
DCASE 2023 Challenge Task 2. We propose two different methods.
The first one is a multitask learning method, which incorporates a
self-supervised attribute classification and a GMM-based scoring.
The second one is to directly train an anomaly evaluator via adver-
sarial learning, which achieves domain generalization by learning
inherit properties other than the attributes. Experimental results on
the development dataset show that both our methods outperform the
baseline methods. The ensemble system has an average improve-
ment of 8% based on the baseline results.

Index Terms— Anomalous Sound Detection, Domain Gener-
alization, Multitask Learning, Gaussian Mixture Model, Adversar-
ial learning

1. INTRODUCTION

DCASE 2023 Challenge Task 2 [1] focuses on machinery monitor-
ing, requiring teams to detect anomalous data using only normal
data. The competition uses datasets from[2] and[3]. Compared to
the previous challenges [4, 5], the challenge this year uses com-
pletely different machine types for the evaluation, which prevents
teams to tune hyper-parameters for each machine type in the train-
ing dataset. In the last challenge, top-ranked teams [6, 7] effectively
learned the properties of the normal samples by training a classifier
according to different kinds of domain shifts as an auxiliary task.
However, no such information are provided this time. Only ma-
chine attributes are provided for training. Hence, we propose two
Anomalous Sound Detection (ASD) methods that try to take the
machine attributes into consideration.

The first method is to build a machine encoder for each ma-
chine type by adopting multitask learning. Since one machine might
have various kinds of attributes, multiple attribute classifiers are
added after the machine encoder to force the learned embedding
to learn useful properties. The second method is to directly train
an anomaly evaluator by adversarial training. The intuition behind
this method is that if we can generate fake machine samples using
some attributes, then by distinguishing the fake and the real sam-
ples, the model can focus on the characteristics other than the at-
tributes, which might be the key to detect anomalies.

2. PROPOSED METHOD

In this challenge, we submit four systems. Zhang DKU_task2_1
and Zhang DKU _task2 2 are trained by multitask learning, which
are introduced in Section 2.1. Zhang DKU task2_3, described
in Section 2.2, is the system trained by adversarial learning.

Zhang_DKU _task2_4 is the fused system using the scores of all the
systems.

2.1. Multitask learning
2.1.1. Audio Encoder

We use two different ways of feature extracting techniques. One
way is to use the naive log Mel-spectrogram, the other way is to use
a neural network to model the process of Short-Time Fourier Trans-
form (STFT). In the past few years, researchers have proposed to
directly build the model from the raw signal, instead of the spec-
trogram or filter bank. The authors in [8] proposed a large-scaled
pretrained audio neural network, using a deep neural network to
directly model the signal. In [9, 10], the authors uses a simple
CNN-based network to directly extract features from raw signal and
showed its effectiveness in the ASD task.

In this challenge, we implement the audio encoder using the
same architecture described in [9]. After the features are extracted
by the audio encoder, they are concatenated with the log Mel-
spectrogram and sent to the backend as the input for the classifier.

2.1.2. Classifier

In our experiment, we use a conformer-based network [11] to map
the audio features into the latent space. Then, we add multiple clas-
sifiers in the backend and train the model using a multitask learning.
Specifically, we imposes three tasks: a) attribute classification b) bi-
nary machine type classification c) auxiliary augmentation classifi-
cation.

The overall pipeline is shown in Figure 1, where e in the figure
stands for the machine embedding in the latent space, a1,...,an
are the posterior probability vector for the 1°¢, ... n'" attribute re-
spectively, pqugy tells the likelihood of different augmentation tech-
niques and p describe the likelihood that the given embedding e
belongs to the target machine type.

Inspired by the systems in the previous challenges [4, 5,
12, 13], machines with types other than the target type can
be seen as the psuedo-anomalous data of the target machine
type. Thus, the likelihood p can also be seen as the anomaly
score measurement. In this challenge, we submit the results
using log Mel-spectrogram and concatenated audio features as
Zhang _DKU _task2_1 and Zhang DKU _task2_2 respectively.

2.1.3. Domain generalization

We did not include any specific domain generalization modules in
our model design. However, in order to mitigate the negative effect
brought by domain shifts, we carefully design the training batches
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to make sure each batch to contain at least one sample from the
target domain.

audio
feature

Figure 1: Multitask learning workflow.

2.1.4. Gaussian Mixture Model

Instead of using only the likelihood p, we introduce the negative
log-likelihood (NLL) from the Gaussian Mixture Model (GMM)
when calculating the anomaly scores. For each machine type, we
train a GMM on the learned embedding of the normal samples, and
calculate the NLL for all the test samples. In order to combine both
scores, we first transform each of them into a standardized scale,
and then we calculate the weighted sum of them. In this way, the
final result of each system is a score fusion of the likelihood p and
the NLL from the GMM.

2.2. Adversarial learning

Since the aforementioned method tries to learn inherit characteris-
tics by distinguishing the machine attributes with various augmen-
tation techniques, and the machine attributes are used to describe
different domains, it lacks domain generalization ability. Hence,
we design another system which directly train an anomaly evaluator
which can learn properties other than the attributes in an adversarial
learning scheme. The overview of this system is shown in Figure 2.
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Figure 2: Adversarial learning workflow. X and X are the original
spectrogram and the reconstructed spectrogram respectively. ¢ rep-
resents the conditional embedding. p is the likelihood that describes
the anomaly score.

First, we train a CVAE that can generate fake samples accord-
ing to the given attributes. The reason we choose CVAE is that it
can bring variations to the generated samples that follow given con-
ditions. Then, we build a simple CNN-based network to distinguish
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the real target samples from the fake target samples and samples
of other types. As the fake samples are generated according to the
given attributes, we want the classifier to learn characteristics other
than the given attributes.

We train the classifier in an adversarial training manner. For
each batch of data, we have two steps. In the first step, we only up-
date the parameters in the classifier. We first generate fake samples
using the trained CVAE, then we feed them to the classifier to distin-
guish the real samples from the fake samples and samples of other
machine types. In the second step, we fool the classifier to judge the
fake samples as real samples, and only update the parameters of the
generator. In this way, we aim to derive a better classifier as well as
a better generator.

Similar to the type classifier described in Section 2.1.2. We
submit the output of the classifier p as Zhang_DKU _task2_3.

3. EXPERIMENT

3.1. Settings
3.1.1. Data Processing

In our systems, we employ a log-Mel spectrogram with 128 Mel
filters as input, with the number of FFT points and hop length set
to 1024 and 160 respectively. Instead of using the whole spectro-
gram, we choose to use a window size of 256. The augmentation
techniques used in this challenge is the same as in [14].

3.1.2. Multitask learning

In both Zhang_DKU _task2_1 and Zhang_DKU _task2_2, the system
contains three conformer blocks without positional encoding, with
512 linear units for FFN modules in each block. We adopt four
heads in the MHSA module, with an output dimension of 256.
To extract deep features, we utilize an attentive statistical pooling
layer after the conformer blocks to get 128d features. All the clas-
sifiers contain only one linear layer. The audio encoder used in
Zhang _DKU _task2_2 is the CNN-based network same as it is in [9].

3.1.3. Adversarial learning

Table 1: The network structure of the encoder in CVAE.
Operator c k s

Convld 32 1 1
Convld 16 3 2
Convld 8 3 2
Linear 256 - -
Linear 16 - -

In Zhang_DKU _task2_3, the architecture of the encoder part in
CVAE is shown in Table 1. The dimension in the latent space is
16. Before decoding, the attributes are encoded as one-hot vectors,
and then concatenated with the embedding sampled from the latent
space.

4. RESULTS AND CONCLUSION

The results of our systems on the development dataset are shown in
Table 2, including the AUC for both source and target domain, the
pAUC, and the harmonic mean of both AUC and pAUC. It is shown
in the table that all of our proposed systems outperform the baseline
systems [15].
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Table 2: Anomaly detection results [%] for different machine types.
Criteria Baseline AE Baseline AE Multitask+GMM  Multitask+GMM  Adversarial Ensemble
with MSE [15]  with MAHA [15]  with MelSpec. with Combined learning

AUC (source) 70.10 74.53 52.00 48.76 43.12 48.32
ToyCar AUC (target) 46.89 43.42 45.52 56.80 55.12 54.68
pAUC 52.47 49.18 49.05 51.79 49.68 52.21
AUC (source) 57.93 55.98 43.66 61.84 42.56 58.68
ToyTrain ~ AUC (target) 57.02 42.45 55.64 49.08 47.40 49.16
pAUC 48.57 48.13 47.79 54.74 47.37 51.16
AUC (source) 65.92 65.16 62.08 66.44 62.80 66.44
Bearing AUC (target) 55.75 55.28 69.08 56.84 57.84 65.00
pAUC 50.42 51.37 56.84 56.84 60.00 57.26
AUC (source) 80.19 87.10 59.88 82.20 73.20 65.92
Fan AUC (target) 36.18 4598 61.52 55.44 65.00 61.40
pAUC 59.04 59.33 57.26 58.11 61.68 57.89
AUC (source) 60.31 71.88 67.76 79.08 69.92 76.88
Gearbox  AUC (target) 60.69 70.78 68.24 70.32 71.12 73.12
pAUC 53.22 54.34 54.53 65.89 69.47 56.42
AUC (source) 70.31 84.02 97.80 95.76 70.40 97.24
Slider AUC (target) 48.77 73.29 95.68 89.52 77.08 91.76
pAUC 56.37 54.72 95.58 69.89 66.11 82.11
AUC (source) 55.35 56.31 80.72 62.08 63.72 59.76
Valve AUC (target) 50.69 51.40 50.84 72.88 72.76 72.28
pAUC 51.18 51.08 53.68 49.26 63.37 48.84
Average  AUC (source) 55.02 5691 59.71 61.55 58.21 61.48
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