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ABSTRACT

The purpose of anomalous sound detection is to detect whether the
sound emitted by the machine is normal or anomalous. Due to the
scarcity and diversity of anomalous data, only normal audio data is
used to detect anomalies. The DCASE 2023 challenge is dedicated
to developing a general-purpose anomalous detection algorithm that
has good anomalous detection results on different machine types.
For the problem scenario of DCASE 2023, we have developed four
systems for anomalous sound detection, which are called VIDNN,
CPC-VAE, VAE-GMM, DDPM.

Index Terms— anomalous sound detection, unsupervised
learning, VAE, diffusion

1. INTRODUCTION

With the development of industrial modernization, artificial-
intelligence-based factory automation, sound, as an important infor-
mation modality, is very useful for monitoring the working status of
machines. The task 2 of the Detection and Classification of Acous-
tic Scenes and Events (DCASE) is set to connect academic tasks
and real-world problems in anomalous sound detection (ASD)[1].

DCASE 2023 challenge task 2 focuses on the following prac-
tical issues. Firstly, since anomalies rarely occur and highly di-
verse in real-world factories, only normal sounds are provided in
the training data to detect unknown anomalous sounds. Secondly,
in actual scenarios, a machine may have different working states,
such as working voltage, running speed, but the difference between
different working states is not the difference between normal and
anomalous sounds. The difference between different work states is
defined as domain shifts. In this task, the system is required to use
domain-generalization techniques for handling these domain shifts.
Lastly, this task hopes to develop a generalized anomalous sound
detection system[2–5].

In the DCASE task 2 challenge of the past few years, discrimi-
native methods based on auxiliary tasks using the machine type and
machine identity (ID) tags attached to given dataset have emerged,
which transform the binary classification task of anomalous detec-
tion into a machine id recognition problem[6]. However, its gener-
alization is limited. Classification methods suffer from performance
instability: performance varies even for machines of the same type.
In DCASE 2023 task2, only a limited number of machines from its
machine type is provided, which means that outlier exposure (OE)
methods like the classification of machine IDs used as an auxiliary
task in the past few years cannot be used. A common inlier mod-
eling (IM) approach using unsupervised learning is to model the

distribution of normal data through unsupervised learning[7]. Ac-
cording to whether the feature of a piece of audio belongs to this
probability distribution, as a criterion for distinguishing, anomalies
can be detected from a large amount of normal data.

In the IM approach field of anomalous detection, autoencoder
is often adopted as a baseline. An autoencoder is mainly composed
of an encoder and a decoder. Its main purpose is to convert the in-
put into a low-dimensional intermediate variable, and then obtain
an output from the intermediate variable, finally compare the in-
put and output to make them as close as possible. There are many
improved models based on autoencoder that have been applied to
the field of anomalous sound detection, such as variational autoen-
coder (VAE)[8], interpolation deep neural network (IDNN)[9]. We
assume that autoencoders trained with normal data can learn the
distribution of normal data, so as to reconstruct normal data, and
because the distribution of anomalous data is different from normal
data, there will be a larger reconstruction error. We added Con-
trastive Predictive Coding (CPC)[10] to VAE, so that the model can
not only be reconstructed, but also use the reconstructed features
to predict features adjacent to the input features on the spectrum,
which is called CPC-VAE.

Anomalous detection using generative models and reconstruc-
tion errors has proven to be a viable approach. Denoising Diffusion
Probability Model (DDPM)[11] is an efficient generative model that
has achieved leading performance in the fields of image generation,
image anomalous detection, and speech synthesis, while there is
no published research in the field of anomalous sound detection.
We propose a new anomalous detection method based on DDPM,
adding Gaussian noise to perturb the input spectrum, estimating the
noise with DDPM and obtaining a high-quality approximation of
the input. When the test sample is anomalous, the noise-perturbed
spectrum will be reconstructed as an approximately normal sample,
and the anomalous is detected by the inconsistency between the in-
put spectrum and the generated sample.

The paper is organized as follows: Section 2 describes our sub-
mitted four systems, namely VIDNN, CPC-VAE, VAE-GMM[12],
and DDPM. Section 3 describes experimental results of four sys-
tems on the development dataset and our discussions.

2. SYSTEM SUBMISSION

We introduce four models we used in the competition: VIDNN,
CPC-VAE, VAE-GMM, and DDPM. The input characteristics of
the four systems are different.Firstly we apply the short-time
Fourier transform (STFT) with the Hann window of size 1024 to ex-
tract STFT feature. For VIDNN and CPC-VAE, the input is STFT
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feature. Then pass the STFT features through the Mel filter and
take the logarithm to get the Fbank features, with the number of
Mel filter banks is set to 128. For VAE-GMM and DDPM, the input
feature is Fbank. The hop size of frame shift is 160 for DDPM, and
hop size of other systems is 512.

2.1. SYSTEM1:VIDNN

For VIDNN, continuously five frames are concatenated and used as
a sample, and four frames in a sample are used as an input, and one
frame was predicted as an output. The loss function of VIDNN is
given as follows:
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The specific structure of the model is shown in Table 1.

Table 1: VIDNN model architecture
Blocks input size output size

FC + BN + ReLU B×2052 B×400
FC + BN + ReLU B×400 B×128
FC + BN + ReLU B×128 B×128

2× (FC + BN + ReLU) B×128 B×24
Reparameterize B×24×2 B×24

FC + BN + ReLU B×24 B×128
FC + BN + ReLU B×128 B×128
FC + BN + ReLU B×128 B×400
FC + BN + ReLU B×400 B×513

When calculating anomalous scores, we used Euclidean dis-
tance calculated by MSE loss as a reconstruction error.

2.2. SYSTEM2:CPC-VAE

Same as VIDNN, continuously five frames are concatenated and
used as a sample. The first four frames are fed into the VAE for
reconstruction. Then the reconstructed four frames predict the fifth
frame through a layer of CPC network, and then concatenate the
first four reconstructed frames with the predicted fifth frame and
calculate the reconstruction error with the five frames of the input
sample. CPC Network uses cosine similarity to evaluate the reliabil-
ity of prediction, and uses Contrastive loss to enhance the network’s
ability. In formula 2, Wk is a linear predictor using GRU output ct
to predict the future information vector after the k-th step of future
feature z, and ct is the t-th contextual feature.

s (ct, z) =
⟨Wkct, z⟩
∥Wkct∥ ∥z∥

(2)

In order for the model to learn to distinguish the real vector zt + k
from the N negative samples , the contrastive prediction loss of each
step (k) prediction is used. The loss function of CPC network is
given as follows:

Lk,t = − log
exp (s (ct, zt+k) /τ)

exp (s (ct, zt+k) /τ) +
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whereτ is the temperature parameter.

In our experiment, the step parameter k of future feature z is set
to 1, the temperature parameterτ is set to 1. Using random shuffle
while training, we consider that other samples in the same batch are
randomly obtained negative samples in formula 4.

DM (x, y) =
√

(x− y)TΣ−1(x− y) (4)

In the last epoch of the training process, we calculated the covari-
ance matrix Σsource and Σtarget for the source and target sam-
ples respectively. When calculating the Mahalanobis distance us-
ing formula 4, we calculated the Mahalanobis distance Dsource and
Dtarget of the samples in the source domain and the target domain
respectively, and the sum of the two serves as the final anomalous
score. Compared with calculating the Mahalanobis distance of the
source domain and the target domain separately and taking a smaller
one, the addition of the two has better domain generalization per-
formance.

The specific structure of the model is shown in Table 2.

Table 2: CPC-VAE model architecture
Blocks input size output size

FC + BN + ReLU B×2052 B×400
FC + BN + ReLU B×400 B×128
FC + BN + ReLU B×128 B×128

2× (FC + BN + ReLU) B×128 B×24
Reparameterize B×24×2 B×24

FC + BN + ReLU B×24 B×128
FC + BN + ReLU B×128 B×128
FC + BN + ReLU B×128 B×400
FC + BN + ReLU B×400 B×513
FC + BN + ReLU B×400 B×2052

GRU B×4×513 B×1024
FC B×1024 B×513

2.3. SYSTEM3:VAE-GMM

For VAE-GMM, the 128-dimensional Fbank feature of every 5
frames is concatenate as a sample. We use MSE loss and KL di-
vergence loss to train VAE, and save the latent features of the repa-
rameterize layer as the fitting target data of GMM.

We save the latent features of all training samples to train
the GMM model, and use the fitted GMM model to calculate the
log likelihood of all training samples, and take the average as the
scoretrain of the normal sample. Then calculate the latent features
for all samples of each audio i, use the fitted GMM model to calcu-
late the log likelihood, and average all the scores to get the scorei
of the audio i in formula 5.

scorei = A (h (f (Xk))) (5)

Xk is the sample of all audio i, f is the encoder and reparameter-
ization network of VAE, h is the GMM model, A is the function
of averaging, and the scoring of all samples belonging to audio i is
averaged.

Then the anomalous score of audio i is calculated by subtract
the scoretrain and scorei, representing the log-likelihood differ-
ence between the test audio and the training audio on the latent fea-
tures.

The specific structure of the VAE model is shown in Table 3.
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Table 3: VAE model architecture
Blocks input size output size

FC + BN + ReLU B×640 B×128
FC + BN + ReLU B×128 B×128
FC + BN + ReLU B×128 B×64
FC + BN + ReLU B×64 B×64

2× (FC + BN + ReLU) B×64 B×30
Reparameterize B×30×2 B×30

FC + BN + ReLU B×30 B×64
FC + BN + ReLU B×64 B×64
FC + BN + ReLU B×64 B×128
FC + BN + ReLU B×128 B×128
FC + BN + ReLU B×128 B×640

2.4. SYSTEM4:DDPM

DDPM can be described as the asymptotic addition of gaussian
noise N with standard deviation σ to input data points x sampled
from distribution X of the training data, controlled by a time step
parameter T. Sampling the sample x0 ∼ X, as T increases, x0 be-
comes an isotropic Gaussian noise distribution p(x, σ). Sampling
the sample xt ∼ N, as T decreases, this point is gradually denoised
is a new sample that obeys the distribution of the data set. The de-
tailed derivation process can be found in [11].

In this experiment, DDPM is used to realize anomalous detec-
tion. This method first destroys the input anomalous spectrogram
x0, so that it is disturbed by noise within t time steps xt, and then
denoises the time step and restores it to x0. The model tends to
generate noisy samples as conforming to the distribution of training
set. To detect anomalies of different sizes, we parameterize xt as
xλ, where larger values ofλ remove larger anomalies.

Same as [11], the denoising network is a U-Net structure with
an encoder-decoder. We set the base channel to 64, attention reso-
lution to 32, 16, 8, and head to 4. The encoder consists of 3 layers
with 64, 128, 256 channels, and correspondingly, the decoder has
256, 128, 64 channels.

For each audio’s FBank, we slice it into 128×128 images along
the time dimension T, with no overlap between images. At infer-
ence time, for an outlier sample x0 in the test set, we add noise to it
to a parameterized time stepλ, and then denoise to get X̄0. In or-
der to detect anomalous samples, the reconstructed spectrogram is
compared with the original spectrum, that is, the MSE between X̄0

of the reconstructed spectrum and the original spectrum x0 is cal-
culated as the anomalous score map, and the audio-level anomalous
score Sanomalous is calculated by formula 6.

Sanomalous =
1

FT

i<F,j<T∑
i=1,j=1

(xij − x̂ij)
2 (6)

3. RESULTS AND DISCUSSIONS

The results of our submitted systems on the development dataset
are demonstrated in appendix. Table4, Table5, Table6, and Table7
respectively illustrate the AUC and PAUC (p=0.1) of different sys-
tems in the source domain and target domain.

Same as the baseline, VIDNN, CPC-VAE after training for 100
epochs. The number of DDPM training steps is set to 64000. We
found that the results of VAE-GMM will vary greatly on different

epochs. We believe this is due to the fact that although the model
loss function converges with increasing epochs, the latent variables
in the intermediate layers are still changing. We show the best re-
sults in 100 epochs, which is different on different machine types.
Since the evaluation set in 2023 is a completely new machine type,
it is impossible to choose the best epoch for each machine, so we
submit the results of training for 100 epochs.

Through experiments, we found that different machine types
have different applicable systems. Some machines are suitable for
detecting anomalies based on reconstruction tasks, such as fan and
bearing, and some machines are suitable for detecting anomalies
based on prediction tasks, such as valve. This means developing
a general approach is very difficult. From the results, we can see
that our four systems have a certain improvement compared with
the baseline, especially DDPM, which is better than other kinds of
anomaly detection in the target domain method.
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Table 4: AUC[%] for source data in baseline, proposed systems
machine ToyCar ToyTrain bearing fan gearbox slider valve
AE+MSE 66.8 60.3 63.0 79.0 59.3 68.9 55.2

AE+MAHALA 71.7 58.5 63.0 81.8 71.9 83.6 55.5
VIDNN 65.7 59.6 65.3 76.6 56.2 74.5 76.9

CPC-VAE 68.7 48.8 60.9 94.3 72.7 79.8 55.5
VAE-GMM 71.8 76.1 69.9 84.7 43.9 53.6 69.3

DDPM 63.0 66.0 76.9 73.8 64.4 77.1 49.6

Table 5: AUC[%] for target data in baseline, proposed systems
machine ToyCar ToyTrain bearing fan gearbox slider valve
AE+MSE 39.4 61.0 52.6 37.9 64.9 54.3 54.1

AE+MAHALA 39.8 43.2 55.7 46.1 68.5 70.9 52.3
VIDNN 38.5 67.9 54.0 35.0 60.8 52.5 68.7

CPC-VAE 38.8 40.1 62.1 55.2 69.5 71.1 51.7
VAE-GMM 59.3 33.8 72.6 56.6 64.9 73.1 57.9

DDPM 62.9 56.0 70.6 81.3 67.1 64.7 43.6

Table 6: pAUC[%] for source data in baseline, proposed systems
machine ToyCar ToyTrain bearing fan gearbox slider valve
AE+MSE 49.3 47.6 60.0 57.5 52.8 59.6 56.4

AE+MAHALA 47.8 47.4 59.4 56.6 56.2 60.8 52.2
VIDNN 50.1 47.4 63.4 60.4 48.4 62.9 61.9

CPC-VAE 48.2 47.4 62.5 76.2 56.2 62.3 50.1
VAE-GMM 51.6 52.3 55.8 54.5 53.2 49.9 53.8

DDPM 52.6 54.5 67.6 67.2 53.7 64.8 52.6

Table 7: pAUC[%] for target data in baseline, proposed systems
machine ToyCar ToyTrain bearing fan gearbox slider valve
AE+MSE 54.1 49.0 48.6 60.8 51.4 52.4 51.2

AE+MAHALA 49.9 49.7 49.7 63.8 49.9 50.1 50.7
VIDNN 49.5 57.5 49.1 64.6 49.5 52.2 55.8

CPC-VAE 49.9 49.3 49.3 62.1 52.4 49.3 50.7
VAE-GMM 50.3 46.7 49.5 56.4 53.5 54.3 50.7

DDPM 54.3 51.8 48.8 60.0 62.1 56.0 52.2


