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ABSTRACT

This report describes our approach to the DCASE (Detection and
Classification of Acoustic Scenes and Events) Challenge for Task 1
”Low-Complexity Acoustic Scene Classification” [1]. The task 1 of
the DCASE challenge aims to classify acoustic scenes using devices
with low computational power and memory. This task involves a
combination of precision and complexity, which encourages par-
ticipants to build efficient systems for acoustic scene classification
(ASC). This year, an additional challenging real-world situation has
been added: the limited availability of labeled data. The systems
must take into account five scenarios that progressively limit the
amount of training data. The largest set corresponds to the entire
training data set, while the smallest contains only 5% of the audio
clips in the training data set. Our approach is a combination of the
use of a deep neural network and statistical processing. A network
based on the YoloV8 topology is pruned to ensure that it meets the
memory constraints of the challenge. The network is trained on
half-length data (500ms), then quantized to reduce its size. During
inference, each one-second sound is divided into two 500ms parts.
Each half is used to make an inference, and both results are com-
bined to improve the classification result. In the event of disagree-
ment, a voting strategy is applied to decide on the correct category.
Classification performance is thus improved by 2% for the smallest
subset and by over 5% for the largest one.

Index Terms— DCASE, ASC, Task 1, Yolo, vote, quantization

1. INTRODUCTION

The DCASE (Detection and Classification of Acoustic Scenes and
Events) challenge [2] serves as a prominent benchmark for evalu-
ating acoustic scene classification (ASC) methods [3], focusing on
classifying ambiances like airport, bus, subway stations, road traf-
fic, and public squares. The goal of Task 1 in the DCASE2024
challenge is to recognize different acoustic scene classes using a
low-complexity classification model. The development dataset in-
cludes audio recordings from ten distinct acoustic scenes across ten
European cities [4]. Additionally, partially synthesized data was
created from the original recordings. The task necessitates accu-
rately labeling these scenes while keeping the model’s complex-
ity low to ensure adaptability across various devices. Therefore, a
balance must be respected between reducing model parameters and
maintaining accuracy.

The model is restricted to a maximum of 128k parameters (in-
cluding zero values) and 30 million multiply-accumulate operations
(MACs) per one-second sample. This year, an additional challeng-
ing real-world situation must be taken into account: the limited
availability of labeled data. To this end, systems must consider five
scenarios that progressively limit the amount of training data. The
largest subset corresponds to the full train split, whereas the smallest
subset only contains 5% of audio snippets of the full train dataset.
This new challenge offers an opportunity to explore innovative ap-
proaches for developing high-performing ASC models with mini-
mal computational requirements in real-life recording conditions.

In previous years, the results of the challenge have been very
good. Various types of network, from the simplest convolutional
network to more complex ones involving new exotic convolution
layers [5] and knowledge distillation have been proposed. This
year, new networks or learning strategies will be proposed, which
will certainly achieve better results. The additional constraint of
using incomplete datasets will, however, reduce the achievable per-
formance, as the minimal dataset contains 20 times less data than
the complete dataset.

Conventional approaches to this kind of problem involve the use
of data augmentation strategies. The approach adopted here goes
one step further. It is based on the observation that sounds from the
acoustic scenes under consideration are, from the human ear’s point
of view, quite similar from one class to another, and often resemble
noise. This means that any part of a given 1-second sound is very
similar to any other part of the same sound. The duration of the
scenes to be classified is very short (one second), which does not
allow a human to recognize them with sufficient precision. In fact,
this duration can be considered arbitrary, in the sense that below
a certain length, it becomes impossible for a human to recognize
them.

But an electronic system uses samples acquired at a fairly high
sampling rate, ensuring that even for a short period of time, these
samples are sufficiently numerous to be used by a neural network.
Consequently, based on these two observations, we defined a strat-
egy combining neural network recognition and the use of sound por-
tions to increase the training dataset and votes to improve classifi-
cation performance.

2. DATA AUGMENTATION

For each subset split of the dataset, sounds with a duration of one
second are divided into smaller parts, each part becoming a new
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sound used for training. Therefore, all sounds used for training are
coming solely from the same subset as the original full duration
sound. No other external data was used for training the network,
and the data from the test split was not used for training.

Two smaller durations were tested: 500 ms (division of the orig-
inal duration by two) and 333 ms (division by three). The former
proved more effective in our tests. Then, several strategies were
tested for the creation of new sounds (figure 1):

1. Divide the original sound into two parts (from 0 to 500ms,
and from 500ms to 1s),

2. Divide the original sound into five superimposed parts,

3. Random mixing of two files: a 500 ms sample is made up of
two 250 ms samples from two different files, preserving the
temporal placement,

4. Interpolation of two original sounds, then division of the new
sound into two parts.

The first strategy increases the size of the training dataset by 2,
the second by 5, the third and last strategies enable to choose the
desired dataset size.

Comparison of training performances between these strategies
have shown that the second is the most effective one. Therefore, the
second data augmentation strategy was chosen to train the network.

Figure 1: Data augmentation strategies studied.

3. MODEL SELECTION AND PRUNING

Given the constraints of the challenge, it is crucial to choose a neu-
ral network model that is efficient in terms of classification. Con-
ventionally, each sound in the training dataset is converted into a
mel-spectrogram, which is stored as an image. Initially in black and
white, this image is transformed into a color image, ranging from
green to blue to red as a function of amplitude, in order to increase
contrast.

So, the network must perform well in terms of image classifi-
cation. We chose a state-of-the-art network: YoloV8 [6]. The net-
work has been pruned (structured pruning) and its internal parame-
ters have been optimized so that the size of the network is compat-
ible with the challenge rules. Figure 2 shows the network topology
on a circle [7], traversed clockwise from ’input’ to ’output’ labels.
On this diagram, dark blue dots represent Conv2D layers, green dots
are for activation layers, yellow dots split the input tensors, and pur-
ple dots add or concatenate incoming tensors. The three last dots,
near the output, represent the GlobalAveragePool, Flatten and fully
connected layers of the classifier.

To preserve network performance, it was decided to train it in
FP32. However, to respect the size constraint imposed by the chal-
lenge, the network would have needed to be reduced beyond its
learning capacity. Post-training quantization in INT8 makes it pos-
sible to reduce the network’s size by a factor of 4, which relaxes the
constraint on the number of learnable parameters. The dimensions
of the network were therefore chosen in order to obtain a number of
parameters slightly lower than 128k: in INT8, this makes it possible
to respect the size constraint. In our model, SiLU layers (Sigmoid
Linear Unit) have been replaced by ReLU layers (Rectified Linear
Units), which are very similar, because PyTorch does not currently
support the quantization of Sigmoid related layers using x86 back-
end. The impact on performance is minimal.

Figure 2: Yolo V8 network structure, with ReLU activation layers.

4. VOTING STRATEGY

The dimensions of the spectrogram images (number of horizontal
and vertical pixels) used for training are chosen according to the
number of MACs indicated in the challenge constraints. Indeed,
the number of MACs of a network with a given image size is di-
rectly related to the product of the image dimensions. So, from a
given number of MACs for a reference image size, it is very sim-
ple to choose the image size which allows the limit imposed by the
challenge rules to be reached.

But, as mentioned above, we decided to implement a voting
strategy to improve the recognition performance. The principle is
to divide the sound used for the inference, lasting one second, into
several portions each lasting 500ms, and to make the inference on
each portion. A vote is then carried out in the event of disagreement
between the different results.

However, each inference consumes MACs, which must be
taken into account to respect the challenge constraint: one vote
on two inferences implies that each inference does not exceed 15
MMACs, one vote on 3 inferences limits them to 10 MMACs, etc.
And reducing the number of MACs for each inference implies re-
ducing the size of the spectrogram images used, therefore reduc-
ing their semantic content. The tests showed that a vote on two
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inferences preserves the quality of the training images, while sig-
nificantly improving the recognition performance.

Consequently, the chosen image dimensions are 80 pixels (in
time - horizontal axis) and 320 pixels (in frequency - vertical axis).

Four different kinds of votes have been tested:

• SUM: sum over the predictions of each class,
• TOP1: count only Top1 results (top1 gets 1, others get 0). This

is not really relevant for 2 inferences,
• ESPER: weighted sum over Top5 results (first gets 5, second

gets 4, etc),
• MAJO: majority vote over the three other strategies.

For all tests, the SUM strategy has proven to be the most effi-
cient.

5. QUANTIZATION

As mentioned above, the model was quantized in INT8, using Py-
Torch. Both Post Training Quantization (PTQ) and Quantization-
Aware Training (QAT) were tested. Quantization has a side ef-
fect that can reduce classification performance. The class is cal-
culated with PyTorch’s Argmax function, which returns the in-
dex of the maximum value of the input tensor elements. But if
this maximum value is present several times in the tensor, the in-
dex returned is the smallest one. For example, for the tensor [-
19.4427, -11.5829, 0.8273, -7.8598, 6.6188, 11.9965, -22.7521,
1.2410, 11.9965, -11.1692] obtained for the sound file street traffic-
milan-1087-40139-0-a, the correct indices are 5 and 8 but the value
returned is 5, whereas the correct class is 8. This kind of error is
very unlikely to occur with FP32-encoded numbers, but is not un-
common with INT8s.

For a tensor of size N quantized over b bits, the probability that
the maximum value occurs several times is:

p = 1− N

2bN

2b−1∑
k=0

kN−1, (1)

which is equal to 1.94% for b = 8 and N = 10. This can be
approximated with a fairly good precision with:

p =
N

2b+1
, (2)

Voting on two inference results considerably reduces the conse-
quences of this artifact and improves the performance of the quan-
tized network, by enabling the correction of prediction errors.

6. RESULTS

According to NeSsi [8], the total number of parameters of the model
is equal to 114988, and the total number of MACs is 13.51 millions.
A vote on two inferences will then consume 27 MMACs.

The networks were trained on each split for 200 epochs, with
the batch size varying with the size of the split. Each network is
trained on a single split and never sees data from other splits. The
performance of the FP32 networks was good when tested on the
spectrogram images from the largest split, ranging from over 45%
recognition for split 5 to over 90% on split 100 (table 1), showing
very good generalisation capacity. However, against all expecta-
tions, performance collapsed when the networks were tested on the

test split, dropping to around 35%. Data normalization and device
simulation using impulse response from the MicIRP dataset were
tested but did not show any improvement.

Split FP32 model FP32 model with
normalization

5 47.0% 47.6%
10 54.5% 55.4%
25 66.6% 67.1%
50 78.1% 80.8%

100 93.2% 92.8%

Table 1: FP32 model performance on spectrogram image recogni-
tion, validation on images from split 100

Due to this performance drop, validation was performed on
the complete training dataset, instead of the test dataset, using the
SUM vote. Table 2 compares the performances of the full pre-
cision (FP32) and 8-bits quantized networks, using Post Training
Quantization (PTQ) and Quantization-Aware Training (QAT), while
performing inference on the sound files of the complete training
dataset. The vote strategy enables to improve the classification per-
formance from 2% for the smallest split to up to 6% for the largest
one.

FP32 PTQ QAT
Split No vote Vote No vote Vote No vote Vote

5 41.9% 43.7% 41.8% 43.5% 43.5% 44.8%
10 48.1% 50.0% 45.9% 48.1% 48.3% 50.3%
25 54.1% 57.9% 50.6% 53.7% 56.3% 59.3%
50 53.9% 58.9% 60.6% 64.8% 63.8% 68.0%
100 64.0% 70.4% 66.3% 72.4% 68.7% 74.6%

Table 2: Comparison of sound classification results on the full train-
ing dataset, using the SUM vote strategy.

Table 3 shows the final results of the quantized QAT model on
the test dataset. Even if performance has dropped, voting can still
improve results by up to 3%.

QAT
Split No vote Vote

5 30.8% 31.9%
10 33.6% 35.1%
25 36.2% 38.4%
50 37.5% 39.9%
100 38.0% 41.3%

Table 3: Sound classification results of QAT model on the test
dataset, using the SUM vote strategy.

Table 4 compares the sizes of the saved unquantized and quan-
tized models.

7. CONCLUSION

In this report, we have presented a new approach to Task 1 of the
DCASE 2024 challenge, which focuses on the efficiency of the ASC
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FP32 PTQ QAT
498600 168440 169220

Table 4: Size of models in bytes

system. A YoloV8-based network was selected and pruned, and
data augmentation and voting strategies were implemented using
sound portions. Each sound is divided into two parts, allowing two
inferences, and the sum of the two tensors is sent to a Softmax layer
to calculate the probabilities of each class. The networks trained on
the different splits were quantized in QAT and tested on the eval-
uation dataset. This strategy makes it possible to correct certain
classification errors, at the cost of reducing the number of MACs
allowed for each inference.

It is likely that the combination of the techniques presented
here (sound partitioning, voting) with knowledge distillation of a
large teacher network into a smaller one would make it possible
to avoid the generalization problem observed and ultimately obtain
much better classification results.
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