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ABSTRACT

Previous acoustic scene classification (ASC) tasks in the DCASE
challenge focused on two important aspects: recording device mis-
match and low-complexity systems. However, implementing ASC
systems in real-life applications remains challenging due to the
time-consuming process of collecting large amounts of labeled data
for system development. DCASE2024 Task 1 is proposed to ex-
plore possible solutions that can efficiently utilize varying ratios of
available training data while maintaining ASC performance. In this
paper, we propose a hierarchical learning-based method to develop
ASC systems using knowledge distillation and pre-trained dynamic
networks. Specifically, we fine-tune the dynamic networks, which
are pre-trained on Audioset, with an additional classification task
and various data augmentation methods. We then employ an ensem-
ble of fine-tuned dynamic networks to teach CP-Mobile networks.
Finally, we fine-tune the CP-Mobile networks using quantization-
aware training to achieve low-complexity models. The experimen-
tal results demonstrate that the proposed systems outperform the
baseline system.

Index Terms— Hierarchical learning, data augmentation, dy-
namic CNN, knowledge distillation

1. INTRODUCTION

Acoustic scene classification (ASC) is a crucial research problem in
computational auditory scene analysis that aims to recognize the
unique acoustic characteristics of an environment [1]. Previous
DCASE ASC tasks have focused on the challenges of domain shift
in recording devices and the development of low-complexity ASC
systems [2]. Although substantial progress has been made in related
fields, challenges still hinder the application of ASC systems in the
real world. One significant challenge is the limited availability of
labeled data when developing ASC systems, as it is expensive to
collect many acoustic scene recordings. Therefore, it is essential to
study possible ways to use labeled data efficiently.

Deep learning algorithms have emerged as the predominant ap-
proach, significantly enhancing ASC performance [3, 4]. Deep
learning-based ASC methods typically require substantial data to
achieve leading performance. Considering the scarcity of labeled

data, Bai et al. proposed a challenge to study potential semi-
supervised learning methods for leveraging both labeled and unla-
beled data in ASC [5]. DCASE2024 Task 1 has also been proposed
to study the data-efficient problem of ASC by limiting different ra-
tios of available training data [6]. The developed ASC system must
be robust to unseen recording devices that are not available in the
training splits. Moreover, the ASC system must be of low complex-
ity to facilitate deployment on embedded devices. The limitations
of available training data and model complexity make it challenging
to develop a robust ASC system.

Pre-trained audio neural networks have emerged as a power-
ful solution to the challenge of insufficient labeled training data
in several audio tasks [7, 8, 9]. These pre-trained models lever-
age vast amounts of weakly labeled audio data during their pre-
training phase, enabling them to learn robust and generalized audio
representations. Consequently, when fine-tuned on other smaller
datasets, they demonstrate significantly improved performance and
efficiency compared to models trained from scratch. However, these
pre-trained audio models are usually large-scale, and even the state-
of-the-art lightweight pre-trained models can not meet the complex-
ity requirement of edge devices.

Knowledge distillation (KD) offers a promising approach to ad-
dress the issue of implementing large-scale pre-trained audio mod-
els for ASC. By transferring knowledge from a large teacher model
to a smaller, more efficient student model, KD enables the deploy-
ment of high-performance ASC systems on the edges. Schmid et
al. trained CP-Mobiles using offline KD from an ensemble of 6 dif-
ferent Patchout FaSt Spectrogram Transformer (PASST) models for
ASC, achieving the top performance on the DCASE2023 ASC Task
[10].

In addition, some techniques have also been proven to be ef-
fective in ASC systems, including data augmentation, model com-
pression, device generalization, and hierarchical learning (HL)
[11]. Particularly, previous works introduce the hierarchical tax-
onomy for ASC, where the acoustic scene classes can be coarsely
grouped into indoor, outdoor, and transportation[11, 12]. The model
can learn experience from the high-level coarse-grained acoustic
classes.

This technical report introduces an HL-based ASC system with
KD and pre-train dynamic CNNs. We first fine-tune the dynamic
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Figure 1: The overall framework of the proposed method. PT DyMN refers to pre-trained dynamic MobibleNet.

CNN s pre-trained on Audioset using each split of the development
dataset. We apply data augmentation, device generalization meth-
ods, and 2 different HL methods during training to further improve
performance. The HL methods aim to additionally classify the 10
acoustic scene classes into 3 different high-level semantic classes:
indoor, outdoor, and transportation. Next, we train CP-Mobile net-
works using offline KD by assembling the teacher models. Finally,
we use the same KD procedures to fine-tune the CP-Mobile net-
works with quantization-aware training (QAT) to further compress
the student model. Experimental results show that the proposed
method outperforms the baseline and fits within the complexity lim-
itations.

The remainder of this paper is structured as follows: Section
2 introduces the details of the proposed framework. Section 3 de-
scribes the experimental settings results. Section 4 concludes this
technical report.

2. PROPOSED METHOD

In this section, we first introduce the overall framework of the pro-
posed method. Then we introduce the model architectures, HL,
QAT, data augmentation, and device generalization methods used
in our systems.

2.1. Overall framework

The whole framework is shown in Fig 1. For each split of the de-
velopment dataset, we repeat the same procedures:

1 We fine-tune the pre-trained dynamic neural networks by in-
corporating 2 HL. methods. We also apply data augmentation
and device generalization methods during the fine-tuning. We
average the logits of the fine-tuned dynamic neural networks
and use them to teach student models.

2 We train the CP-Mobile networks from scratch using the aver-
aged logits from teacher models. We also incorporate the HL
method, data augmentation, and device generalization methods

during this stage.

3 We fine-tune the CP-Mobile networks using QAT. We also
keep distilling the knowledge into the CP-Mobile networks and
incorporating multi-task learning, data augmentation, and de-
vice generalization methods. Finally, we save the quantized
CP-Mobile networks for evaluation.

2.2. Model architecture
2.2.1. Dynamic CNNs

Pre-trained neural networks can significantly enhance the perfor-
mance on downstream tasks. These networks are more efficient
when the data of downstream tasks is insufficient for training the
model from scratch. CNN-based pre-trained audio neural networks
were first proposed and achieved promising performance on many
audio tasks[7]. Then Transformer-based pre-trained audio neural
networks outperform CNN ones while introducing more computa-
tion cost [8]. Recently, Schmid et al. introduced dynamic compo-
nents into the MobileNets and used KD from a series of pre-trained
large-scale Transformer-based model assemblies for training [9].
These dynamic CNNs are more efficient and achieve competitive
performance with Transformer-based pre-trained audio neural net-
works. To this end, we introduce the pre-trained dynamic CNNs as
our efficient teacher models for ASC.

Schmid et al. designed the architectures of dynamic CNNs fol-
lowing the MobileNetV3-Large (MN). The dynamic CNNs consist
of dynamic convolutions (Dy-Conv), dynamic ReLU (Dy-ReLU),
and Coordinate Attention (CA) modules [13, 14, 15]. The Dy-
Conv can extract noise-invariant features; Dy-ReLU increases the
model’s expressiveness by applying a dynamic non-linear function;
and CA detects important channels, time frames, and frequency
bins. These dynamic components are integrated into efficient in-
verted residual blocks in dynamic MN (DyMN) [16]. The DyMNs
are defined using the parameter of width_mult, e.g., DyMNI0 is the
DyMN with width_mult of 1.0.
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Teacher Model Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Pre-trained DyMNs DyMNIO DyMN20 DyMN20 DyMN20 DyMN20 DyMN20
Data Augmentation | FMix Fmask FMix Fmask Mixup Fmask  Mixup Fmask FMix Fmask = FMix Fmask

Freq-MixStyle v v v v v v

HL in Teacher X X OB TB OB TB

split5 0.477 0.498 0.496 0.493 0.498 0.495
split10 0.523 0.547 0.543 0.542 0.553 0.545
split25 0.563 0.578 0.585 0.591 0.582 0.579
split50 0.585 0.603 0.616 0.620 0.605 0.599
split100 0.609 0.627 0.649 0.654 0.630 0.627

Table 1: The performance of each split for the teacher models. DyMN10 and DyMNZ20 are dynamic MoblieNets with different width_mult.
OB and TB are one-branch and two-branch methods of hierarchical learning.

——— e ——— e e

[} ] I |
: Model i : Model i
I\ y '\ )
. A b A S
' MLP | MLP | | MLP |
A 4 A 4 A 4
10 classes 10 classes 3 classes
¥
3 classes

(@) One-branch (OB)  (b) Two-branch (TB)

Figure 2: Two different architectures of hierarchical learning.

2.2.2. CP-Mobile

CP-Mobile was proposed as a novel efficient architecture for ASC
[3]. CP-Mobile consists of residual inverted bottleneck blocks and
incorporates different normalizations with the model. CP-Mobile
maintains the representation capability of the CP-ResNet, making it
efficient even in low-complexity settings.

2.3. Hierarchical learning

Some research introduced a hierarchical taxonomy for ASC, where
the acoustic scene classes can be coarsely grouped into indoor, out-
door, and transportation (vehicle) [11, 12]. They used the hierarchi-
cal taxonomy as an auxiliary task to make the model learn coarse-
grained and fine-grained acoustic information. Therefore, we pro-
pose 2 hierarchical learning methods. For the first method, we map
the output of 10 acoustic scene classes into 3 coarse-grained classes
and additionally calculate the cross-entropy loss of the 3-class clas-
sification. For the second method, we introduced a multi-task learn-
ing method using a two-branch network. The two methods are il-
lustrated in Fig 2.

2.4. Quantization-aware training

QAT models the effects of quantization during training, allowing
for higher accuracy compared to other quantization methods. QAT
is introduced to further compress the CP-Mobile networks and meet
the complexity requirements. During training, all calculations are
performed in floating point, with fake quantization modules model-
ing the effects of quantization by clamping and rounding to simulate
the effects of INT8 quantization. After model conversion, weights
and activations are quantized, and activations are fused into the pre-
ceding layer where possible.

2.5. Data augmentation and device generalization methods

1 Mixup. It constructs a new training example by linearly inter-
polating two random examples from the training set and their
labels[17].

2 FMix [18] can effectively augment the training data by ran-
domly mixing irregular areas of two samples, and it is proven
to be effective in improving the performance in ASC [19].

3 Frequency mask (Fmask). We randomly mask the frequency
components of the spectrogram.

4 We apply Freq-MixStyle to address the device generalization
problem [20].

3. EXPERIMENT

3.1. Experimental settings

We follow most of the baseline settings during feature extraction.
We only change the hop_length to 505. We normalized each Mel-
bin for training data and saved the mean and var values to normalize
test and evaluation data.

We use the pre-trained DyMN10 and DyMN?20 as the pre-trained
dynamic CNNs. The base_channels, channels_multiplier, and ex-
pansion_rate of CP-Mobile are set to 32, 2.3, and 3, separately.

We use Adam optimizer with a learning rate of le-4 for fine-
tuning the pre-trained DyMNs and QAT, while in KD we train the
CP-Mobile with a learning rate of 1e-3. The batch size is set to 48.

3.2. Results

We fine-tuned DyMN10 as the teacher model 1 without using HL.
Then we fine-tuned DyMN20 as the teacher model 2 to 6 with or
with different HL and data augmentation methods. For all mod-
els, we implemented Fmask and Freq-MixStyle for all models to
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Submission System 1 System 2 System 3 Baseline
Ensemble Models  Model 1-2  Model 3-4  Model 1-6
Student CP-Mobile
HL in Student X OB X
Data Augmentation Fmask Fmask Fmask
Freq-MixStyle v v v
split5 0.426 0.429 0.422 0.424
split10 0.471 0.469 0.492 0.453
split25 0.540 0.517 0.541 0.503
split50 0.570 0.562 0.564 0.532
split100 0.594 0.593 0.603 0.570
Average 0.520 0.514 0.524 0.496
Parameters 126,952 122,296
MACS 28,893,268 29,419,156

Table 2: The details of performance on each split, parameters, and MACS for submitted systems. The performance is evaluated using the

quantized CP-Mobile models.

improve the device generalization performance. Table 1 shows the
performance of each split for the 6 teacher models.

From the table, comparing the performance of model 1 and 2,
we can see that the fine-tuned DyMN20 surpass DyMN10 for each
split. Comparing the performance of model 2 and 5, the perfor-
mance is further improved, indicating the effectiveness of introduc-
ing the HL. When we use Mixup instead of FMix in HL, we achieve
higher scores on split25, split50, split100 but lower scores on split5
and split10. This shows that FMix is more effective for smaller
datasets. Comparing the results of 2 different HL methods, the
two-branch method works when applying Mixup instead of FMix.
Moreover, the proposed DyMNs with HL and data augmentation
methods even surpass some ensembles of PASST or CP-ResNet on
split100.

We developed 3 different systems for the final evaluation. We
used the logits averaged from model 1 and 2 and trained the CP-
Mobile for system 1. For system 2, we averaged from model 1
and 2 and trained the CP-Mobile with the one-branch HL method.
For system 3, we averaged the 6 logits of models in Table 1 and
trained the CP-Mobile without using HL method. Table 3.2 shows
the performance of each split for the submitted systems. As shown
in the table, all the 3 systems outperform the baseline with about
127K parameters and 29M MACS.

4. CONCLUSION

In this technical report, we propose a hierarchical learning-based
ASC method with knowledge distillation and ensembles of dynamic
CNNs. We introduced 2 different hierarchical learning methods
with data augmentation methods when fine-tuning the pre-trained
DyMNs. We average the logits of different teacher models and dis-
till the CP-Mobile models with the knowledge from teacher models.
We further use quantization-aware training to compress the student
models. Experimental results show that our systems outperform the
baseline for each split on the test set.
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