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ABSTRACT

In this technical report, we describe our proposed system for the
traffic monitoring challenge. Our solution addresses the critical
need for efficient traffic monitoring systems in smart city develop-
ment, leveraging the advantages of acoustic sensors. Initially, we
review various sensor types used in traffic monitoring, emphasizing
the benefits of acoustic sensors such as low cost, power efficiency,
and robustness in adverse conditions. Given the challenges of col-
lecting and labeling real-world traffic data, we incorporate synthetic
data generated via the pyroadacoustics simulator to enhance system
performance. We employ multiple data augmentation techniques
to create a balanced and comprehensive training dataset. Our ap-
proach also includes detailed metadata integration, which provides
sensor location IDs, timestamps, sensor array geometry, and vehicle
counts. During the training phase, we implement several strategies
to improve the system’s generalization in real-world environments.
Our results demonstrate that the proposed system significantly out-
performs baseline models in accurately detecting and classifying
traffic events, validating the efficacy of our approach using both real
and synthetic data.

Index Terms—

1. INTRODUCTION

Traffic monitoring solutions are essential for smart city develop-
ment, helping to monitor roadway infrastructure usage and con-
ditions and detect anomalies [1]. These systems use various sen-
sors categorized into two main types: intrusive and non-intrusive
sensors. Intrusive sensors, such as induction loops and vibration
or magnetic sensors, are embedded directly into the road. Non-
intrusive systems, like radar, cameras, infrared or acoustic sen-
sors, and off-road mobile devices such as aircraft or satellites, are
mounted over or on the side of the road. Acoustic sensors, in par-
ticular, offer several advantages that make them a desirable choice
either alone or combined with other sensors. Their benefits include
low cost, power efficiency, ease of installation, and robustness to
adverse weather and low-visibility conditions. Collecting and la-
beling real-world traffic data is challenging and resource-intensive.
To address this issue, this challenge investigates the impact of us-
ing synthetic data generated by traffic simulators on system per-
formance. Alongside real-world traffic sound recordings, a tool is

Figure 1: System overview

provided to synthesize realistic vehicle pass-by events under vari-
ous traffic conditions using the open-source pyroadacoustics road
acoustics simulator [2].

2. PROPOSED METHOD

In this section, we first introduce the input features of the proposed
system. Then we introduce the network architecture and training
procedures.

2.1. Features

The primary input for the model is a batch of raw audio waveforms.
The transformation of these raw signals into meaningful features is
pivotal for effective traffic monitoring. Initially, the raw waveform
is converted into its time-frequency representation using the Short-
Time Fourier Transform (STFT). The STFT decomposes the signal
into its constituent frequencies over short time intervals, facilitating
the analysis of its spectral content. To enhance the interpretability
and relevance of the spectral features, the magnitude of the STFT
output is mapped onto the mel scale, resulting in a log-mel spec-
trogram. This transformation aligns the frequency representation
more closely with human auditory perception, emphasizing percep-
tually significant frequencies. Concurrently, the Generalized Cross-
Correlation (GCC) is computed from the STFT output. The GCC
captures the time delay between audio channels, providing critical
spatial information that aids in direction-of-arrival (DOA) estima-
tion and sound source localization. Both log-mel and GCC features
undergo normalization to ensure uniform feature scales, which is
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essential for stable and efficient model training. The final step in-
volves concatenating the log-mel and GCC features, creating a com-
prehensive feature set that leverages both spectral and spatial infor-
mation. This combined feature representation enhances the model’s
ability to accurately classify different audio events, leading to robust
traffic monitoring and anomaly detection.

2.2. Network architecture

Following the temporal merging, the data is processed through a
series of transformer encoder layers. Transformer encoders are par-
ticularly effective for sequence modeling tasks due to their self-
attention mechanism, which allows them to capture long-range de-
pendencies and contextual information more efficiently than re-
current neural networks (RNNs). The self-attention mechanism
in transformer encoders can simultaneously attend to information
from different positions in the sequence, making it well-suited for
understanding complex temporal relationships within the audio sig-
nal. By replacing the RNN layer with transformer encoder layers,
the model gains several advantages. Transformer encoders can pro-
cess sequences in parallel rather than sequentially, leading to im-
proved computational efficiency and scalability. Additionally, the
self-attention mechanism enables the model to weigh the impor-
tance of different time steps more effectively, enhancing its ability
to capture intricate temporal dependencies that are crucial for accu-
rately distinguishing between different types of vehicles and their
directions of travel. This is particularly beneficial for traffic moni-
toring, where the audio signal may contain overlapping sounds from
multiple vehicles and environmental noise. The output from the
transformer encoder layers provides a refined feature set that en-
capsulates both the temporal dynamics and the spatial information
derived from the earlier stages. This refined feature representation
is then utilized in the subsequent regression layer to predict specific
vehicle counts. The final stage of the model involves a regression
layer that takes the output from the last transformer encoder layer.
This step is critical for translating the processed features into spe-
cific vehicle counts. The regression layer outputs a set of values
corresponding to the counts of four different classes: cars traveling
to the right, cars traveling to the left, commercial vehicles (CV) trav-
eling to the right, and commercial vehicles traveling to the left. This
output format directly addresses the traffic monitoring objectives by
providing precise counts for each vehicle class and direction.

3. EXPERIMENTS

3.1. Experimental settings

We adhere to the baseline settings for feature extraction, employing
a sampling frequency of 16kHz, 128 Mel filters, and an STFT con-
figuration with a frame length of 64ms and a frame hop of 10ms.
Our training process begins with a batch size of 64 and involves
two stages: initially training on simulated data for 100 epochs with
a learning rate of 0.005. In the fine-tuning stage, we further refine
the model using real recordings for an additional 100 epochs. Dur-
ing this stage, the learning rate is adjusted to 0.1, with decay applied
to optimize performance.

3.2. Results

There are two evaluation metrics: The RMSE value is influenced
by the range of data values: since the variation range of CV num-
bers is not large, RMSE tends to be lower overall. Kendall’s Tau

Corr, primarily emphasizes the sequential correlation between two
sequences and is less affected by numerical values. This aspect is
crucial for monitoring traffic flow trends. Table 1 shows the perfor-
mance of the development set for the proposed methods.

Table 1: Results on Different Locations
Location Metric car left car right cv left cv right

loc1 Kendall’s Tau Corr 0.437 0.44 0.149 0.128
RMSE 2.571 2.928 0.905 0.889

loc2 Kendall’s Tau Corr 0.53 0.461 0.109 0.134
RMSE 3.196 2.446 0.89 0.658

loc3 Kendall’s Tau Corr 0.543 0.566 0.191 0.32
RMSE 1.744 1.309 0.314 0.213

loc4 Kendall’s Tau Corr 0.463 -0.063 -0.254 -0.261
RMSE 1.653 1.228 0.934 0.515

loc5 Kendall’s Tau Corr 0.546 0.445 -0.08 -0.045
RMSE 0.708 0.717 0.385 0.279

loc6 Kendall’s Tau Corr 0.806 0.714 0.736 0.688
RMSE 1.598 1.742 0.544 0.52

4. CONCLUSION

In this report, we present our system designed for efficient traf-
fic monitoring in smart city development, leveraging acoustic sen-
sors. We review sensor types, emphasizing acoustic sensors’ cost-
effectiveness, energy efficiency, and resilience. To address data
challenges, we augment real-world data with synthetic data from
the pyroadacoustics simulator. Our exploration of various network
architectures resulted in performance improvements over baseline
methods.
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