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ABSTRACT

This technical report gives an overview of our submission to task
3 of the DCASE 2024 challenge. We present a sound event local-
ization and detection (SELD) system using input features based on
trainable neural generalized cross-correlations with phase transform
(NGCC-PHAT). With these features together with spectrograms as
input to a Transformer-based network, we achieve significant im-
provements over the baseline method. In addition, we also present
an audio-visual version of our system, where distance predictions
are updated using depth maps from the panorama video frames.

Index Terms— sound event localization and detection, time
difference of arrival, generalized cross-correlation

1. INTRODUCTION

The sound event localization and detection (SELD) task consists
of classifying different types of acoustic events, while simultane-
ously localizing them in 3D space. In previous editions of the chal-
lenge, the localization amounted to predicting the direction of ar-
rival (DOA), whereas this year’s challenge also involves estimating
the distance relative to the microphone array. The audio recordings
can be used in two formats: first order ambisonics (FOA), which
combines recordings from 32 microphones, or 4-channel record-
ings from a tetrahedral microphone array (MIC). In recent years,
most systems submitted to the challenge have utilized the former
format, whereas the latter has been less explored. In this report,
we therefore focus on how to better exploit information in the MIC
recordings.

Generalized cross-correlations with phase transform (GCC-
PHAT) [1] combined with spectral audio features is the basis
for most SELD methods for microphone arrays. The spectral
features contain important cues on what type of sound event is
active, whereas the purpose of GCC-PHAT is to extract the time-
differences of arrival (TDOA) between pairs of microphones. The
TDOA measurements can then be mapped to DOAs given the
geometry of the array. However, GCC-PHAT is known to be sen-
sitive to noise and reverberation [2]. GCC-PHAT may also fail
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to resolve TDOAs for multiple events simultaneously, because of
limited sampling resolution. To this end, spatial cue-augmented
log-spectrogram (SALSA) [3] and variants thereof (SALSA-Lite)
[4] have been proposed, which combine directional cues with spec-
trograms in a single feature.

In this report, we explore the neural GCC-PHAT (NGCC-
PHAT) [5], that filters audio signals and outputs multiple correla-
tion features per microphone pair. We show that such features can
be learnt by employing permutation invariant training, which allows
for prediction of TDOAs for multiple overlapping sound events.

2. TDOA FEATURE EXTRACTION

For TDOA audio features, we use NGCC-PHAT [5], which is a
form of generalized cross-correlation that can be trained to predict
time delays between pairs of microphones. Given two signals xi,xj

received in a time frame from microphones i and j, NGCC-PHAT
infers the corresponding TDOA for a sound event.

We extend NGCC-PHAT to predict time delays for multiple
events in a single time frame using auxiliary duplicating permuta-
tion invariant training (ADPIT) [6] by creating separate target labels
for each active sound event. For a given time frame, let ri, rj ∈ R3

denote the locations of microphone i and j, and sk ∈ R3 be the
location of the k:th active event. We then define the corresponding
TDOA as

τk
ij = ⌊Fs

c
(||sk − ri||2 − ||sk − rj ||2)⌉, (1)

where Fs is the sampling rate, c is the speed of sound and ⌊·⌉ de-
notes rounding to the nearest integer.

We then train a classifier to predict the TDOA of all active
events for all pairs of microphones by treating it as a multi-
nomial classification problem, where predictions from K sepa-
rate output tracks are assigned to the different events. The last
layer of the NGCC-PHAT network therefore outputs K prob-
ability distributions pk(t|xi,xj) over the set of integer delays
t ∈ {−τmax, ..., τmax}, where τmax = maxi,j⌊||ri − rj ||2Fs/c⌉
is the largest possible TDOA for any pair of microphones. The
corresponding label is a unit impulse response defined as

δτk
ij
[t] =

{
1, t = τk

ij ,

0, otherwise.
(2)

With K as the number of tracks, assume for now that there are
also K active events. Furthermore, let Perm([K]) denote the set of
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Figure 1: Overview of our SELD system. Audio features from a pre-trained NGCC-PHAT network are fed together with spectral features
to a CST-former network that outputs SELD predictions. In the audio-visual system, we update the distance predictions from frame-wise
depth-maps extracted from a pre-trained Panoformer-network.

permutations of the events {1, . . . ,K}. For a single microphone
pair (i, j) and an event arrangement α ∈ Perm([K]), the loss is
calculated using the average cross-entropy over all output tracks as

lα(xi,xj) = − 1

K

K∑
k=1

τmax∑
t=9τmax

δ
τ
α(k)
ij

[t] log pk(t|xi,xj). (3)

Due to the ambiguity in assigning different output tracks to dif-
ferent events, we calculate the loss for all possible permutations of
the events and use the minimum. The loss is then averaged over all
M(M − 1)/2 microphone pairs, where M is the total number of
microphones, and the total loss then becomes

L =
2

M(M − 1)

M∑
i,j=1
i<j

min
α∈Perm([K])

lα(xi,xj). (4)

Note that this loss function is class-agnostic, since the output
tracks are not assigned class-wise. The main purpose of the TDOA
features are therefore to provide better features for localization in
combination with some other audio representation that is suitable
for event detection and classification. Time frames with no active
events are discarded during NGCC training, since no TDOA label
can be assigned. When at least one, but fewer than K events are
active, we duplicate the label for the last active event, such that
predictions for each track can be assigned to a TDOA label.

3. SYSTEM DESIGN

3.1. Audio System

Our audio system consists of an NGCC-PHAT network together
with CST-former [7], which is a Transformer-based SELD network
that utilizes self-attention across the temporal, spectral and channel
dimensions independently. We consider only the tetrahedral mi-
crophone array recordings and do not use first order ambisonics in
our system. Training of our system consists of two phases: 1) pre-
training of the NGCC-PHAT network for TDOA prediction as de-
scribed in Section 2 and 2) training the CST-former for the SELD
task. A high-level overview of our system is shown in Figure 1.

The NGCC-PHAT network operates on raw audio signals and
consists of four convolutional layers with 32 output channels, the
first being a SincNet [8] layer, and the remaining three use filter
of length 11, 9, and 7 respectively. Here, each convolutional layer
is applied independently to audio from the M = 4 different mi-
crophones. GCC-PHAT features are then computed channel-wise
for all pair-wise combinations of microphones, and the features are
then processed by another four convolutional layers, where the fi-
nal layer has C = 16 output channels. The tetrahedral microphone
array used for the recordings has a diameter of 8.4 cm, which corre-
sponds to a maximum TDOA of τmax = 6 delays at a sampling rate
of Fs = 24 kHz. In total, the TDOA features therefore has shape,
[C,M(M − 1)/2, 2(τmax + 1)] = [16, 6, 13].

During pre-training for TDOA-prediction, the 16 channels are
then mapped by a final convolutional layers to K = 3 output tracks.
Although the maximum polyphony in a single time frame in this
year’s challenge is five, we use K = 3 tracks since the computa-
tional complexity of PIT-training scales as O(K!) and more than
three simultaneous events are rare anyway. When more than three
events are active, we randomly select labels for three events and
discard the rest.

When training the SELD-network, we extract TDOA features
for longer audio signals by windowing the NGCC-PHAT computa-
tion without overlap. We use the default challenge setup of 5 second
audio inputs, which corresponds to T = 250 TDOA features when
using a window length of 20 ms. Since the TDOA features are de-
signed to be class-agnostic, we combine them with spectral features
in order to better distinguish between different types of event. For
this we use log mel-spectograms (MS) or mel-frequency cepstral
coeficcients (MFCC) with F = 64 spectral features for each of the
M = 4 input channels.

When merging the spectral features with the TDOA features,
we first concatenate the 16 channels for the 6 microphone pairs of
the TDOA features, and use a linear projection to map the 13 time-
delays to 64 dimensions. The TDOA features are then concatenated
with the M spectral features channel-wise, resulting in a combined
feature size of [CM(M − 1)/2 +M,T, F ] = [100, 250, 64].

The combined feature is passed through a small convolutional
network with 64 output channels with pooling over the time and
spectral dimensions. Here we use two different variants that deter-
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mine the size of the input features to the CST-former network: 1)
pooling over 5 time windows and 4 frequencies, which produces
features of size [64, 50, 16], or 2) pooling over 5 time windows and
no pooling over frequencies, which results in features of size [64,
50, 64]. We call the second variant large for that reason.

The CST-former network consists of Transformer blocks,
where each block contains three self-attention modules: tempo-
ral attention, spectral attention and channel attention with unfolded
local embedding. We use the default configuration with two blocks,
each with eight attention heads, and refer to [7] for more details
about this architecture.

3.2. Audio-Visual System

For better depth predictions, we have tested the use of a pre-
trained model for monocular depth estimation. We use the model
Panoformer [9], that is trained on panoramic indoor images (the
Stanford 2D-3D Semantic dataset [10]). We sample every third
frame in the video sequence. The image data is then downsam-
pled to a resolution of 512 × 1024, and normalized with mean
(0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225)
in RGB respectively. The normalized images are passed to the
Panoformer model which outputs 512 × 1024 metric depth maps.
The depth maps are scaled with a factor of 25 and truncated to
unsigned 8-bit for storage purposes. When we run our audio model
we can get a depth estimate for each detection by looking up the
corresponding depth value in the depth map position corresponding
to our predicted angle.

We update the depth maps for all classes, except for ”water tap”
and ”knock”, since these events are often occluded and not visible
to the camera. Furthermore, for human-related classes (speech and
laughter), we subtract 30 degrees from the predicted elevation angle
when retrieving the depth, in order to avoid retrieving depth from
blurred faces.

4. EXPERIMENTS

4.1. Dataset and Training Setup

We train all our models on a mixture of real spatial audio record-
ings and simulated recordings. The real recordings are from the
STARSS23 [11] audio-only development dataset, which consists of
about 7 hours of multi-channel audio recordings. For data augmen-
tation, we use channel-swapping [12], which expands the dataset
by a factor of 8 by swapping the input channels and corresponding
DOA labels in different combinations.

The simulated data is provided as a part of the DCASE 2024
challenge [13] and consists of 20 hours of synthesized recordings,
where the audio clips are taken from the FSD50K [14] dataset. In
addition, we generate an additional 2 hours of synthesized record-
ings using Spatial Scaper [15] with impulse responses from the TAU
[16] and METU [17] databases. This additional data only con-
tains sounds from classes that occur rarely in the real recordings,
namely “bell”, “clapping”, “doorCupboard”, “footsteps”, “knock”
and “telephone”. The total amount of training data amounts to about
78 hours.

The NGCC-PHAT network was trained for 1 epoch with a con-
stant learning rate of 0.001, after which the weights were frozen.
For the challenge submission, we trained the rest of the system for
175 epochs using the AdamW optimizer [18] with a batch size of
64, a cosine learning rate schedule starting at 0.001 and weight de-
cay of 0.05. The mean squared error was used as loss function with

Table 1: Macro-averaged test results on STARSS23 [11] audio-only
dev-test. Our results are obtained using CST-former [7]. Large
models discards pooling over frequencies in the input features.

Model Input feature FLD ↑ DOAE ↓ RDE ↓ #params

Baseline [20] GCC + MS 9.9 38.1 0.30 744k

CST-Former GCC + MS 16.3 28.7 0.79 550k
SALSA-Lite 26.4 28.2 0.38 530k
NGCC + MS 29.0 23.9 0.38 663k
NGCC + MFCC 28.7 20.8 0.38 663k

CST-Former
(large)

NGCC + MS 32.0 21.8 0.44 1.49M
NGCC + MFCC 26.8 26.5 0.57 1.49M

Table 2: Macro-averaged test results on STARSS23 [11] audio-
visual dev-test using different types of input features. Our results
are obtained using CST-former [7]. Updated distance estimates are
performed using Panoformer [9]. Large models discards pooling
over frequencies in the input features.

Model Input feature FLD ↑ DOAE ↓ RDE ↓ #params

Baseline [20] GCC + MS 11.8 38.5 0.29 2.7M

CST-Former
+ Panoformer

GCC + MS 21.3 28.7 0.32 20.9M
SALSA-Lite 27.0 28.2 0.28 20.9M
NGCC + MS 29.8 23.9 0.28 21.0M
NGCC + MFCC 29.4 20.8 0.28 21.0M

CST-F. (large)
+ Panoformer

NGCC + MS 33.4 21.8 0.28 21.9M
NGCC + MFCC 29.0 26.5 0.28 21.9M

labels in the Multi-ACCDOA [6] format, with distances included as
proposed in [19]. In order to penalize errors in predicted distance
relative to the proximity of the sound events, we scale loss-terms for
the distance error with the reciprocal of the ground truth distance.

For reporting results on the STARSS23 development dataset,
we train the models on the same data as described above, but omit-
ting the dev-test split and use the non-augment version of this split
for evaluation instead. The number of training epochs is also in-
creased from 175 to 3001.

4.2. Experimental Results on Development Dataset

We report our results on the STARSS23 dev-test split for the audio-
only system in Table 1, where we compare our method with the
challenge baseline using the metrics defined in the challenge. The
metrics used are the macro-averaged location-dependent F-score
(FLD), which is thresholded such that true positives must have an
angular error less than 20◦ and relative distance errors must be less
than 1, as well as the macro-averaged DOA error (DOAE) and rela-
tive distance error (RDE).

We also report results of training our system with standard
GCC-PHAT and SALSA-lite input features. Notably, NGCC fea-
tures yields large improvements in DOAE compared to these.

In Table 2, we present results where the distance predictions
are updated using depth maps. This results in significantly lower
relative distance errors compared to the audio-only system, as well
as small improvements in terms of F-score.

1Code will be made available at https://github.com/
axeber01/ngcc-seld/
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