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ABSTRACT

This report describes our systems submitted for the DCASE2024
Task 3 challenge: Audio and Audiovisual Sound Event Localiza-
tion and Detection with Source Distance Estimation (Track B). Our
main model is based on the audio-visual (AV) Conformer, which
processes video and audio embeddings extracted with ResNet50
and with an audio encoder pre-trained on SELD, respectively. This
model outperformed the audio-visual baseline of the development
set of the STARSS23 dataset by a wide margin, halving its DOAE
and improving the F1 by more than 3x. Our second system per-
forms a temporal ensemble from the outputs of the AV-Conformer.
We then extended the model with features for distance estimation,
such as direct and reverberant signal components extracted from
the omnidirectional audio channel, and depth maps extracted from
the video frames. While the new system improved the RDE of our
previous model by about 3 percentage points, it achieved a lower
F1 score. This may be caused by sound classes that rarely appear in
the training set and that the more complex system does not detect, as
analysis can determine. To overcome this problem, our fourth and
final system consists of an ensemble strategy combining the predic-
tions of the other three. Many opportunities to refine the system and
training strategy can be tested in future ablation experiments, and
likely achieve incremental performance gains for this audio-visual
task.

Index Terms— Sound Event Localization and Detection,
Audio-Visual Machine Learning, Multimodal, Distance Estimation,
Sound Event Detection

1. INTRODUCTION

Sound Event Localization and Detection (SELD) consists of simul-
taneously detecting and classifying the active sound sources over
time (sound event detection (SED)) while predicting their position
or direction of arrival DOA [1]. This task is essential for a variety
of applications, such as human-robot interaction, augmented real-
ity, navigation, smart home, and security, to name a few. Over time,
researchers have been addressing more and more challenges related
to the task, including the detection of polyphonic sounds [2], si-
multaneous same-class events and moving sources [3], and external
interfering sounds that must not be detected [4]. This year, the chal-
lenge also involves predicting the distance of the active sources [5].
While SELD has been typically formulated as an audio-only task,
a parallel audio-visual track has been included in the past two edi-
tions of the DCASE challenge, leveraging the Sony-TAu Realistic

Spatial Soundscapes 2023 (STARSS23) dataset [6]. STARSS23 in-
cludes 360° video recordings spatially and temporally aligned to
the acoustic sound-field captured by the microphone array. This
allows the exploration of SELD as a multimodal audio-visual prob-
lem (AV-SELD). The two modalities are complementary and can be
beneficial to the task: vision provides high spatial accuracy whereas
audio can detect occluded objects.

This report describes our systems submitted to the audio-visual
track of the challenge. Specifically, we adopted two main mod-
els and methods. The first extends our previous work on SELD
where an audio-visual (AV) conformer takes as input the concate-
nation of audio and video embeddings extracted with pre-trained
encoders [7]. The extension consists of adapting the existing model
to support distance estimation, as described in Section 2. In Sec-
tion 3, the second method investigates additional input features and
extends the model architecture to improve distance estimation and
take more advantage of the visual modality. We report our results
on the STARSS23 development set [6] in Section 4, including a
temporal ensemble and an ensemble of all three variants, improving
substantially over the challenge baselines. Section 5 concludes.

2. AUDIO-VISUAL CONFORMER

As depicted in the left part of Fig. 1, this method extracts audio and
visual feature embeddings with an audio and a visual encoder, re-
spectively. The embeddings are then concatenated and processed by
a Conformer module with 4 layers. Finally, the output features are
fed to two fully connected layers to predict multi-ACCDDOA vec-
tors [5]. Such representation is the extension of the multi-ACCDOA
vectors proposed by Shimada et al. [8], adopted to include distance
predictions. Specifically, at each time frame, the output presents
N = 3 tracks, each predicting 4 positional values (x, y, z, and
distance), for each of the C = 13 classes, resulting in a 156-
dimensional vector. We employed the hyperbolic tangent as the
activation function for the x, y, z predictions, while ReLU for the
distance. In this report, we will refer to this system as per “AV-
Conformer”. The same audio-visual architecture and methods were
presented in our recent work [7]. The main difference with the sys-
tem presented for this challenge consists in the integration of the
distance estimation and the use of the new metrics. Below, we de-
scribe the audio and visual encoders, and the data augmentation and
pre-training strategies.
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Figure 1: Diagram of the two main architectures submitted to the challenge. On the left, the AV-Conformer with the respective audio and
visual encoders. On the right, the Depth-cued model that includes a frame encoder employed to extract visual features from the central frame.
The Depth-cued model leverages cubemap views whereas the AV-Conformer equirectangular views. The snowflake symbol indicates that the
weights of ResNet50 and ViT are fixed during training.

2.1. Audio Encoder

The audio encoder takes as input acoustic features extracted from
the FOA spatial sound. We employed intensity vectors (IV) in
the log-mel space concatenated with the log-mel spectrograms ex-
tracted from the FOA channels, yielding 7-dimensional input fea-
tures with shape 7×Tin×Fin, where Tin corresponds to the number
of temporal bins and Fin the frequency bins. The audio encoder in-
cludes a CNN architecture followed by a Conformer [9]. The CNN
presents 4 convolutional blocks with residual connections. Each
block consists of two 3×3 convolutional layers followed by aver-
age pooling, batch normalization, and ReLu activation. The average
pooling layer is applied with a stride of 2, halving the temporal and
frequency dimension at each block. The resulting tensor of shape
512 × Tin/16 × Fin/16 is then reshaped and frequency average
pooling is applied to achieve a Tin/16 × 512 dimensional feature
embedding. Tin is chosen so that Tin/16 matches the label frame
rate (10 labels per second). The feature embedding is further pro-
cessed by a Conformer module with 4 layers and 8 heads each. The
size of the kernel for the depthwise convolutions is set to 51.

2.2. Visual Encoder

As visual encoder, we employed a ResNet-Conformer. Specifically,
we fed each video frame to ResNet50 [10] at a frame rate of 10
fps. In such a way, we extract a number of frame embeddings that
match the label frame rate as well as the audio embedding tem-
poral resolution. We then process the frame embeddings with a
Conformer module identical to the one employed in the audio en-

coder. The video segments used as inputs to the visual encoders
were resized to 448×224p. The original ResNet50 model is pre-
trained on squared 224×224p frames and its last layer is a global
average pooling applied on a 7×7 feature map. Since, in our case,
the input horizontal dimension is 448, the resulting feature map has
shape 14×7. Therefore, we replaced the last global average pooling
with a 7×7 average pooling kernel with stride equal to 7, obtaining
two output vectors that are then concatenated. Before being fed to
the Conformer module, the output of ResNet50 is reduced to 512
dimensions with a linear layer.

2.3. Data Augmentation and Pre-Training

The audio CNN-Conformer was pre-trained on SELD employing
the simulated data generator script provided for the DCASE 2022
challenge [11]. This allowed the generation of ∼30h of spatial
recordings, including noiseless and noisy versions. The ResNet50
model employed to process 2D frames is available with the Torchvi-
sion library and it is pre-trained on ImageNet [12]. The synthetic
SELD dataset used to pre-train the audio encoder was augmented by
a factor of 8 with the audio channels swap (ACS) technique [13].
For the AV-SELD dataset, we also augmented the visual modal-
ity consistently with the ACS transformation, i.e., the audio-visual
channel swap (AVCS) [7, 14]. This generates new video frames by
flipping and rotating the original ones, creating an effective audio-
visual spatial transformation. An example of a transformed frame
is shown in Fig. 2
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Figure 2: Examples of visual transformation in relation to the re-
spective DOA augmentation for “fold3 room6 mix006.mp4”.

3. DEPTH-CUED MODEL

The other main system submitted to the challenge differs signifi-
cantly from the previous one in many aspects, including model ar-
chitecture and size, audio and visual data pre-processing, and audio
pre-training. Consequently, their overall performances cannot be di-
rectly compared. A step-by-step ablation study would be necessary
to understand the impact of each change. We refer to this method
as per “Depth-cued model”, since particular attention was given to
incorporating audio and visual depth features.

3.1. Direct and Reverberant Audio Features

While log-mel spectrograms and intensity vectors (IV) are effec-
tive input features for the SED and DOAE subtasks, they are not
ideal for tackling the distance estimation task. Distance cues can
be extracted from the relationship between the direct and reverber-
ant components of the captured audio signals. Specifically, the later
tail of the reverberant signal (late reverberation) carries informa-
tion about the sound’s apparent distance. We decided to include
both direct and reverberant components (“DR”, for compactness)
extracted from the Omnidirectional audio channel to the set of in-
put features, in the form of two additional log-mel spectrograms. In
order to estimate the direct sound, we applied the Weighted Predic-
tion Error (WPE) dereverberation algorithm [15]. Specifically, we
adopted the python implementation of the WPE algorithm released
by Drude et al. [16] (taps=60; delay=5; iterations=5). The reverber-
ant component is then estimated by taking the difference between
the original and the direct signal in the temporal domain. RD fea-

tures are then concatenated to the 4 log-mel spectrograms and the
3 intensity vectors used before, producing audio input features with
shape 9× Tin × Fin.

3.2. Cubemap Conversion and Depth Map Extraction

The 360° videos of STARSS23 are in the form of 2:1 equirectan-
gular views. Such representations produce heavy distortions that
become more severe closer to the borders of the frame. We argue
that this might penalize the ability of the visual encoder to under-
stand the scene since ResNet50 is pre-trained on frontal views. To
this end, we converted the video frames to cubemap representations.
Such image representation consists of mapping the 360° image data
onto the six faces of a cube. Since the sound events are primar-
ily located within the four horizontal faces (left-right-front-back)
and little information can be obtained from the top (ceiling) and
the bottom (EigenMike) faces, we kept only the horizontal faces.
The resulting frames present an aspect ratio of 4:1, with resolution
896×224p. Note, the conversion to cubemap is applied after the
AVCS technique is performed to the equirectangular views.

To leverage the visual modality in support of the distance es-
timation task, we extracted depth features from video frames too.
Specifically, we applied the recent “Depth Anything” model [17] to
generate depth views of the scene. Fig. 3 shows (a) a frame with the
original equirectangular representation, (b) its cubemap representa-
tion, and (c) the depth map extracted from the horizontal faces of
the cubemap representation.

3.3. Depth-cued Model’s Architecture

Part of the Depth-cued model architecture presents the same au-
dio and visual encoders and Conformer unit employed in the AV-
Conformer model. However, the input frames used with the Depth-
cued model are cubemap views, and the audio encoder is pre-trained
on the synthetic mixtures provided by the challenge’s organizers
and takes as input also DR features. Additionally, both audio and
visual encoders produce 1024-dimensional embeddings.

An additional frame encoder is included too. It consists of a vi-
sion transformer (ViT) [18] pre-trained on ImageNet [12]. The in-
put tokens fed to the ViT are obtained by dividing the central frame
into patches of 16×16p. Therefore, a total of 14×56 = 784 tokens
are extracted from the 896×224p frame, and each token presents
16×16×3 = 768 dimensions, where 3 corresponds to the number
of color channels. The same patch extraction technique is applied
to the depth map frame feature too, which only presents a single
channel. The depth patches are then concatenated to the output of
the ViT to produce 782×1024 dimensional features. These are em-
ployed to generate a set of Key-Value pairs for a multi-head cross-
attention (MHCA) unit applied against the audio features (Queries).

The main motivation for employing the ViT and the MHCA
unit is to try to leverage the spatial accuracy provided by the visual
modality. Unlike ResNet50 which downsamples the spatial reso-
lution of the input frames with the risk of losing spatial informa-
tion, we argue that the ViT should preserve such information en-
coded within the processed patches. The outputs generated by the
AV-Conformer and by the MHCA are then concatenated and fed to
a feed-forward network that predicts the output multi-ACCDDOA
vectors [5].



Detection and Classification of Acoustic Scenes and Events 2024 Challenge

(a) Original equirectangular view

(b) Horizontal faces of the cubemap view

(c) Depth map features

Figure 3: Examples of cubemap transformation and depth map fea-
tures for “fold3 room13 mix003.mp4”. Note how by removing the
top and bottom faces from the cubemap representation the Eigen-
Mike and a good portion of the ceiling are no longer in the frame.

4. EXPERIMENTS

4.1. Implementation Details

To train our models, we divided the dataset into chunks of 3 sec-
onds, extracted at steps of 1s for training and with no overlap for
testing. An STFT with 512-point Hann window and hop size of
150 samples generates spectrograms discretizing the 3-second au-
dio chunks (24kHz) into 480 temporal bins (Tin). We used 128 fre-
quency bins to generate log-mel spectrograms and intensity vectors
(IV) in log-mel space. We trained our models with batches of 32
inputs and Adam optimizer for 40 epochs, then we selected the best
epoch. The learning rate is set to 0.00005 for the first 30 epochs,
then and it is decreased by 5% every epoch. The metrics adopted
for the evaluation are the ones proposed in the DCASE 2024 Task3
Challenge [6].

4.2. Ensemble strategies

Inference is conducted on 3-second video segments without any
overlap, meaning each segment starts exactly 3 seconds after the
previous one. To enhance spatial accuracy, we tested a temporal
ensemble (TE) strategy. For this, inference was performed with a
1-second hop size, generating 3 predictions for each second of the
sequence (except for the first 2 seconds). A sound event is consid-
ered active only if at least 2 out of the 3 predictions detect it. To
determine if the sounds detected by different predictions are from
the same event, we applied a spatial threshold of 15°. Predictions
are considered related if their positions are within this threshold.

Table 1: Results on the development set of STARSS23 [6].

Method F≤20◦/1 ↑ DOAE ↓ RDE ↓
Baseline AO 13.1% 36.9° 33.0%
Baseline AV 11.3% 38.4° 36.0%

AV-Conformer 40.8% 17.7° 30.5%
AV-Conformer (TE) 38.7% 16.8° 30.4%

Depth-cued 30.7% 18.9° 27.0%
Ensemble 40.3% 18.0° 29.7%

The average of their x, y, z, and distance predictions is employed as
the final temporal ensemble. This approach improved spatial accu-
racy but reduced the F1 score. As a result, we submitted a single
system using TE, specifically applied to the AV-Conformer model.

As a result, our submitted systems are (1) the AV-Conformer
method, (2) the AV-Conformer with TE, and (3) the Depth-cued
model. We found that the Depth-cued model rarely detects “Wa-
ter tap” and “Bell” sounds, and it never detects “Knock” sounds.
Therefore, we submitted a fourth system, which is an ensemble of
the other three. This ensemble strategy follows the same approach
as the temporal ensemble. However, for the “Water tap”, “Bell”, and
“Knock” classes, if any one of the three models detects the sound,
we consider it active, even if the condition of having at least 2 out
of 3 predictions is not met.

4.3. Results

The results achieved on the development set of the STARSS23 [6]
dataset are reported in Table 1. The AV-Conformer method achieves
the highest F1 score, while the Depth-cued model has the lowest
RDE. However, the Depth-cued model’s F1 score is approximately
10 percentage points lower than that of the AV-Conformer, mainly
due to its failure to detect certain rare classes, like “Knock”. The
ensemble system recovers these 10 points in the F1 score. How-
ever, it does not provide the improvement in localization accuracy
that is achieved with the temporal ensemble. All submitted systems
achieve superior performance than the audio-only (AO) and audio-
visual (AV) baselines that employ the FOA audio format.

5. CONCLUSION

This technical report describes the 4 systems submitted to the Task 3
of DCASE 2024 Challenge (Track B). Specifically, two main mod-
els are explored: an AV-Conformer and a Depth-cued model, which
correspond respectively to system one and system three of the four
submitted. The second system applies a temporal ensemble strat-
egy to the output of the AV-Conformer, and the fourth system con-
sists of an ensemble of the other three. All our systems outperform
the audio-only and audio-visual challenge baselines on the develop-
ment set of the STARSS23 dataset.
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